
AutoGraff:
towards a computational understanding of graffiti writing and related art forms.

Daniel Berio

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of

Goldsmiths, University of London.

Department of Computing

Goldsmiths, University of London

January 10, 2021

2

3

I, Daniel Berio, confirm that the work presented in this thesis is my own. Where infor-

mation has been derived from other sources, I confirm that this has been indicated in the

work.

Abstract

The aim of this thesis is to develop a system that generates letters and pictures with a style

that is immediately recognizable as graffiti art or calligraphy. The proposed system can be

used similarly to, and in tight integration with, conventional computer-aided geometric de-

sign tools and can be used to generate synthetic graffiti content for urban environments in

games and in movies, and to guide robotic or fabrication systems that can materialise the

output of the system with physical drawing media.

The thesis is divided into two main parts. The first part describes a set of stroke primi-

tives, building blocks that can be combined to generate different designs that resemble graf-

fiti or calligraphy. These primitives mimic the process typically used to design graffiti let-

ters and exploit well known principles of motor control to model the way in which an artist

moves when incrementally tracing stylised letterforms. The second part demonstrates how

these stroke primitives can be automatically recovered from input geometry defined in vec-

tor form, such as the digitised traces of writing made by a user, or the glyph outlines in a

font. This procedure converts the input geometry into a seed that can be transformed into a

variety of calligraphic and graffiti stylisations, which depend on parametric variations of the

strokes.

Acknowledgements

My fascination with graffiti art started with me being a kid that was trying to learn the C-

programming language. I saw graffiti tags in the streets of my hometown, Florence, and I

wandered what was this obscure code written on the walls of the city. Ironically, one of my

first attempt at sketching graffiti letters, was writing the word “UNIX” on a schoolbook. Little

did I know, that I would end up writing graffiti for years to come but also end up writing this

massive document on the combined topic of graffiti and computing.

This course of events would have not been possible without the support and advice of

my supervisor Frederic Fol Leymarie. I would like to thank him immensely for believing in

this project, for his friendship, for his mentoring and for being engaged with the work until

the very last minute. I would also like to thank Frederic for sharing with me his expertise,

insight and opinions about shape, which have greatly contributed to this work and I hope are

expressed to his satisfaction in this thesis.

The connections of the thesis to “skeletons” (in the sense of Harry Blum) goes back to

my friend Alexander Bucksch, who I would like to thank for the good times back in Den Haag,

for convincing me in the first place to pursue a PhD and for warning me, only when my pro-

posal was accepted, about the potential downsides of this life choice. I would also like to

thank Prashant (Alpha) Aparajeya for the good times and conversations during the start of

my studies and for always being more reliable than Wolfram Alpha in answering my mathe-

matical questions. I would also like to thank Alex Evans, for always being supportive during

my PhD and for having in a way set course to this journey by enabling me to visit Guildford

in the early 2000s.

A special thank-you also goes to Sylvain Calinon, who is not listed as an official super-

visor, but most certainly helped me as such. A lot of the work in this thesis is also due to his

contributions and advice, and I would also thank him for letting me visit the Idiap research

institute in Switzerland, where I spent 6 months struggling with the challenges of controlling

a humanoid robot and diving in a lot of the theoretical background underlying this thesis. In

this regard, I would like to thank in particular Réjean Plamondon, who’s theories have also

contributed to three chapters of this thesis. I would like to thank him firstly for believing in

this project, and also for his support, advice and for introducing me to the Graphonomics

8 Acknowledgements

community. I would like to also thank Tamar Flash, for her kindness, the always stimulat-

ing conversations and for pointing me in interesting new directions, which I hope to explore

more in depth in the future. My gratitude also goes to Rebecca Chamberlain and Luca Citi,

who’s additional supervision and ideas have brought the work presented here in interesting

new directions. In particular I would like to thank Rebecca, together with Guido Orgs and

Caitlin Mullin and collaborators for also greatly contributing to this project with their excel-

lent empirical research.

My gratitude also goes to Paul Asente and Jose Echevarria at Adobe Research, for sup-

porting this project in the last two years, and for the precious advice during the most chal-

lenging part of my studies. In particular I would like to thank Paul for also believing in this

project, always challenging me with his questions and letting me visit Adobe in the first place,

where another big part of the work in this thesis was also conceived. I would also like to thank

Daichi Ito at Adobe Research for providing beautiful designs to test with our system and for

presenting results in Japan and in Korea.I am also grateful to my examiners Craig Kaplan

and Anthony Steed for taking their time to read this document in depth, for the stimulating

discussion during the viva and for the useful and sometimes even hilarious comments.

A big thank-you goes also to the IGGI (Intelligent Games and Game Intelligence) pro-

gramme for supporting this PhD and in particular to my Goldsmiths colleagues and friends

Christian Guckelsberger, Memo Akten and Tom Cole, with a longing for our restaurant explo-

rations (and feasts) during the first year of the PhD studies, as well as Henrik Siljebrat and Rob

Homewood for the fun after-lab sessions at the pub. I would like to especially thank Memo,

who contributed in a big part to one chapter of this thesis and with whom I shared sleepless

nights trying to finish the work in time for a deadline. I want to also thank my friend Yaprak

for making me smile during tough times, and also send a thank-you to a number of graffiti

artists, some for contributing with photos or suggestions and some simply for being good

friends during this time, as we say for graffiti I will “put them up” with their tags as BEES,

SMART, KEIN, MORE, HULK, VIME, RELAX, EGS, CESAR, KRESO, GREY, TRIXTER, NEMA,

ELK, DRAX, SIEGE, PETRO, YEP, RAKIE, YOM and probably more that I forgot to add here.

Finally, this thesis is dedicated to my mother (Ima) my brother (Yoni) and in loving mem-

ory of my father (Aba).

Contents

1 Introduction 23

1.1 A short overview of graffiti styles . 24

1.1.1 Tags . 24

1.1.2 (Master-)Pieces . 26

1.1.3 Other graffiti styles and elements . 28

1.2 Graffiti in the Digital and Virtual Realms . 30

1.2.1 Graffiti in Graphic Design . 30

1.2.2 Graffiti in Games and Movies . 32

1.2.3 Computer Aided Graffiti Design . 33

1.3 Part I: Graffiti primitives . 35

1.3.1 Calligraphic stylisation: Movement and tags 36

1.3.2 Outline stylisation: Parts and pieces . 38

1.3.3 Overall contributions of Part I . 39

1.4 Part II: Recovering graffiti primitives from geometry 40

1.4.1 Geometric input analysis . 40

1.4.2 Trace based methods . 41

1.4.3 Outline based methods . 41

1.4.4 Overall contributions of Part II . 42

1.5 Publications . 42

2 Notation and preliminary definitions 45

2.1 Geometry . 45

2.2 Motor plans and strokes: . 47

3 Background 49

3.1 A Brief History . 49

3.2 Beyond painting and drawing: Graffiti production 50

3.3 Curves in computer graphics . 50

10 Contents

3.3.1 Fairness, beautification and neatness of curves 51

3.3.2 Curve stylisation . 52

3.4 Movement perception and representation . 53

3.4.1 Movement in the arts . 53

3.4.2 Perception of movement in static forms . 54

3.5 Motor control . 56

3.5.1 Principles and invariants . 56

3.5.2 Trajectory formation . 62

3.5.3 Graphonomics: Models of drawing and handwriting movement 64

3.6 Letterform representation, generation and stylization 67

3.6.1 Structural representations of letterforms 67

3.6.2 Stroke representations . 69

3.7 Letterform stylisation and generation . 71

3.7.1 Handwriting synthesis . 71

3.7.2 Font and calligraphy generation and stylisation 73

3.7.3 Stroke segmentation . 75

3.8 From shape to strokes . 76

3.8.1 Curvature based shape representations . 77

3.8.2 Axial symmetry based shape representations 81

3.8.3 Perceptual grouping . 86

3.8.4 From parts to strokes . 88

3.9 Summary . 92

I Part I - Kinematic and geometric primitives for interactive graffiti art
generation 95

4 Calligraphic stylisation: the Sigma-Lognormal model 97

4.1 Sigma Lognormal Model . 98

4.2 ΣΛmodel for calligraphic stylisation . 101

4.2.1 The weighted Sigma Lognormal (ωΣΛ) model 101

4.2.2 The Weighted Euler Spiral Sigma Lognormal (ωEΣΛ) Model 102

4.2.3 Lognormal timing reparameterisations . 104

4.3 User interaction . 105

4.4 Kinematic variability and stylisation . 106

4.4.1 Artificial variability . 107

4.4.2 Stylistic variations . 108

4.5 Stroke generation and animation . 111

4.6 Conclusion . 115

Contents 11

5 Calligraphic stylisation: Minimal intervention control 117

5.1 Trajectory Generation . 118

5.1.1 Dynamical system . 119

5.1.2 Optimization objective . 121

5.1.3 Tracking formulation . 122

5.1.4 Control weights . 124

5.1.5 Stochastic solution . 124

5.1.6 Periodic motions . 127

5.1.7 Multiple references . 127

5.2 User interfaces . 130

5.2.1 Mimicking Bézier curves . 131

5.2.2 Semi-tied structure . 134

5.3 Calligraphic stylisation . 135

5.3.1 Reconstructing instances of calligraphy . 135

5.3.2 Predefined motor plans . 136

5.3.3 Generating Asemic Tags . 138

5.3.4 Stroke thickness . 139

5.4 Discussion . 140

5.4.1 Performance . 140

5.4.2 Limitations: passage times . 140

5.5 Conclusion . 142

6 Outline stylisation: Sketching and layering 145

6.1 Stroke Generation . 147

6.1.1 Smooth strokes . 151

6.2 Apparent layering and overlaps . 152

6.2.1 Partitions . 153

6.2.2 Fold culling . 154

6.2.3 Layering and Planar Map . 155

6.3 Results and Applications . 157

6.4 Conclusion . 162

II Part II - Graffitization: Recovering graffiti primitives from shape 167

7 Curvilinear Shape Features 169

7.1 Introduction . 169

7.1.1 Masking Problem . 171

7.1.2 Solution: Recursive CSF Computation . 173

12 Contents

7.2 Symmetry axis transform . 174

7.2.1 Discrete implementation . 175

7.2.2 Voronoi approximation . 176

7.3 Computing Curvilinear Shape Features (CSFs) . 177

7.3.1 CSF Computation . 178

7.3.2 CSF Overlap . 179

7.3.3 CSF saliency . 179

7.3.4 Computing the CASA . 180

7.4 Absolute Curvature Minima CSFs with the ESAT 181

7.4.1 Computing the ESAT: Farthest Voronoi Diagram 181

7.4.2 Identifying m+ and M− CSFs . 183

7.5 Transition Segments and Inflections . 184

7.5.1 Fitting Euler Spirals . 184

7.5.2 Inflections . 187

7.6 Discussion . 187

7.7 Conclusion . 190

8 From Geometry to Kinematics with CSFs 195

8.1 Segmentation method . 196

8.1.1 Circular arc decomposition . 196

8.2 Iterative Reconstruction of ΣΛ parameters . 198

8.2.1 Initialisation: Features, Sub-movements, Initial Targets 198

8.2.2 Iterative scheme: Keys, Max speeds, Moving Targets 200

8.2.3 Underlying observations . 201

8.2.4 Stopping Criteria, SNR . 203

8.3 Editing, Rendering and Stylistic Variations . 204

8.3.1 Smoothing and Fairing. 205

8.4 Comparison: constrained minimum jerk model and MIC 208

8.5 Conclusions . 212

9 Example-driven stylisation with the Sigma Lognormal Model 215

9.1 Method . 217

9.1.1 Example-based input . 217

9.1.2 Kinematic parameters . 217

9.1.3 Data augmentation . 218

9.1.4 Kinematic Parameter Prediction (KPP) . 218

9.2 Results . 221

9.2.1 User defined virtual targets. 222

Contents 13

9.2.2 Kinematic Style Transfer . 226

9.3 Discussion . 227

9.3.1 Model complexity . 229

9.4 Conclusion . 230

10 From 2D Shape to Strokes with CSFs 233

10.1 Overview . 235

10.2 2D Shape Analysis . 237

10.2.1 Extended 2D Shape Analysis . 237

10.2.2 Good continuation (α) and flow direction (ϕ) 240

10.3 Splits . 241

10.3.1 Local conditions . 243

10.3.2 Fork and branch assignments to splits. 244

10.3.3 Split salience . 245

10.4 Junction Identification . 246

10.4.1 Junction properties . 247

10.4.2 Iterative Junction Identification . 251

10.4.3 Step 1: IdentifyΨ-junctions . 251

10.4.4 Step 2: Identify Other Junctions . 253

10.5 From Junctions to Stroke Representations . 257

10.5.1 Stroke Paths . 257

10.5.2 Stroke Areas . 260

10.6 Discussion and Results . 262

10.7 Conclusion . 264

11 Font stylisation 267

11.1 Path-based stylisation . 267

11.1.1 From stroke paths to strokes . 268

11.1.2 Simplification: constructing motor plans 269

11.1.3 Structural modifiers . 270

11.1.4 Calligraphic Stylisation . 272

11.1.5 Outline Stylisation . 274

11.1.6 Stroke animation . 277

11.2 Area-Based Stylisation: Stroke Similarity . 278

11.3 Conclusions . 279

14 Contents

12 Conclusion 281

12.1 Part I: Stroke primitives . 282

12.2 Part II: Graffiti content generation . 284

12.3 Summary of Contributions . 285

12.4 Limitations and future work . 286

12.4.1 ΣΛmodel . 286

12.4.2 MIC . 287

12.4.3 Graffiti design . 288

12.4.4 Empirical aesthetics research . 289

12.4.5 Parameter choices and evaluation . 291

12.4.6 Data driven methods . 292

12.5 Final notes . 293

Appendices 294

A List of peer-reviewed publications 295

B Ferri’s form and composition functions 297

C Additional details on MIC trajectory generation 301

C.1 Displacement-based smoothing weight . 301

C.1.1 Derivation with Simple Harmonic Motion 302

C.2 Iterative solution . 303

D Additional details for font segmentation 305

D.1 Association fields . 305

D.2 Hanzi segmentation examples . 306

D.3 Font segmentation examples . 307

E Symbols and values 313

E.1 Symbols (general): . 313

E.2 Other symbols and objects: . 314

E.3 Functions: . 315

E.4 Parameters: . 316

E.5 Thresholds and Tolerances: . 316

Bibliography 318

List of Figures

1.1 Examples of tags . 25

1.2 Graffiti, from sketch to piece . 26

1.3 Sticks and softies . 27

1.4 Examples of self-overlapping loops. 27

1.5 Fundamental styles . 27

1.6 Graffiti . 29

1.7 Examples of throw-ups . 29

1.8 Examples of puppets . 30

1.9 Examples of abstract styles . 30

1.10 Editing graffiti with conventional vector graphics techniques. 31

1.11 Examples of graffiti in the videogame GTA. 32

1.12 Graffiti in movies . 33

1.13 A few different kinds of strokes. 35

1.14 Example stroke stylisations of a motor plan for the letter “R” 35

1.15 Common letter structures. Example tag letters from Evan Roth’s graffiti taxon-

omy. 37

1.16 Letter “N” isolated from some pieces . 38

3.1 Bell shaped speed profiles . 60

3.2 Skeletal strokes . 70

3.3 Codon grammar . 80

3.4 Some symmetry axis variants . 83

4.1 The effect of different time overlaps for 2 lognormals 99

4.2 Sigma-lognormal trajectory and corresponding speed profile. 102

4.3 Euler spiral with Hermite constraints. 103

4.4 Lognormals for different values of Aci . 104

4.5 Example UI for editing ΣΛ trajectories . 107

16 List of Figures

4.6 Target structure of a letter "a" (top left) and kinematic variations of its trace

generated by perturbing ΣΛ parameters. 108

4.7 Trajectory variation and smoothing by scaling ∆t 109

4.8 Key-point adjustment . 110

4.9 Key-point adjustment . 111

4.10 Exaggeration of ΣΛ parameters . 112

4.11 Kinematics-based brush rendering of ΣΛ trajectories 112

4.12 “Hat” functions for brush generation. 112

4.13 Different brush textures, with the corresponding parameters and an example

trajectory . 113

4.14 Brush dabbing with speed dependent width . 114

4.15 Lognormal drips. 114

4.16 Reproducing a tag created with the ΣΛmodel with a compliant robot. 115

5.1 GMM-based trajectory generation in a nutshell 118

5.2 Covariance based variations of a trajectory . 119

5.3 (a), smoothing effect of increasing the variance of a Gaussian. (b), manipu-

lating the trajectory evolution with full covariances. Below each trajectory, its

corresponding speed profile. 119

5.4 Effect of different activation sequences with the same set of Gaussians. 123

5.5 Order independent control weight . 125

5.6 Stochastic sampling from the trajectory distribution. 126

5.7 Stochastic sampling of periodic trajectories. 128

5.8 Periodic motions . 128

5.9 Adding a tracking reference with time varying velocity 129

5.10 Additional reference with time varying coordinate system on velocity 129

5.11 User interaction and kinematics driven brush rendering effects. 131

5.12 Approximating cubic Bézier curves with optimal control 132

5.13 Mimicking Bézier curves with a stepwise reference 133

5.14 Control point perturbation with . 133

5.15 Automatic ligature generation . 134

5.16 Different stylisations of a letter “Z” using semi-tied covariances with different

orientations. 135

5.17 Illustrative example of the oblique coordinate system 135

5.18 Interface for manipulating semi-tied covariances and corresponding trajectories136

5.19 Calligraphic stylisations of a user-defined motor plan 136

5.20 User reconstruction of an instance of calligraphy. 137

5.21 User reconstruction and variation of a graffiti tag. 137

List of Figures 17

5.22 Stylisation of simple alphabet letters. 138

5.23 Concatenation of predefined motor plans composing the word “ABRACADABRA”138

5.24 Asemic tags. 138

5.25 Illustration of the asemic glyph generation procedure. 139

5.26 Variable brush thickness smoothing. 140

5.27 Comparison of performances between the batch and iterative approaches. . . 140

5.28 Cubic interpolation with MIC. 141

5.29 Comparing MJ with MIC. 142

6.1 Examples of outputs from our system . 145

6.2 Graffiti with complicated intertwined strokes . 148

6.3 Strokes with rectangular prototypes and varying width profiles 148

6.4 Corner rib adjustment. 150

6.5 Effect of angle fall-off parameter. 150

6.6 Variations of strokes for the same spine and width. 151

6.7 Rounded strokes. 153

6.8 A smooth stroke with squared ends (left) and a piece-wise smooth version of it

(right) . 153

6.9 Partition shapes . 154

6.10 Different fold cases. 154

6.11 Stylised folds, showing the effect of the fold-rendering parameter. 155

6.12 Additional layering effects. 157

6.13 Performance of the method for increasing number of curve samples and spine

segments . 158

6.14 Layering interactions . 158

6.15 Interactive construction of a graffiti letter "R" . 159

6.16 Graffiti letters (“A” and “R”) generated and rendered with our method. 159

6.17 Generated weaving pattern with Eulerian path. 161

6.18 Weaving pattern drawn by a pen plotter. 162

6.19 Layering of strokes with a more complex stroke prototype 163

6.20 Overlaps with self-folds . 163

6.21 Experiments with graffiti weaving patterns. 165

7.1 CSFs and CASA compared to 1D curvature function 170

7.2 Issues with the SAT for the identification of curvature extrema. 172

7.3 Global and local SAT . 174

7.4 Voronoi skeleton . 176

7.5 CSFs and support segments . 177

18 List of Figures

7.6 Overlapping disks along a spiral segment. 179

7.7 Concave CSF saliency computation for the outline of a glyph 180

7.8 Retrieving CSFs and the CASA for a glyph outline 181

7.9 ESAT . 182

7.10 Contact regions for absolute maxima and minima of two smooth contours. . . 183

7.11 Reconstruction and curvature function approximation of a B-spline contour. . 185

7.12 An Euler spiral, its inflection point (circle) and a Euler spiral segment (thick

black). 186

7.13 Subdivision of support segments for fitting Euler spirals. 187

7.14 CSF computation performance for closed contours and traces. 188

7.15 CSFs for circle and ellipses, with and without high frequency noise. 189

7.16 Qualitative comparison of salient points labelled by participants and CSFs . . 190

7.17 CSFs and transition segments of tag traces from the graffiti analysis database. 192

7.18 (a) Interior and exterior SAT for a number of glyphs. (b) The corresponding

CSFs. 193

8.1 Decomposing Euler spirals (stippled cyan) into arcs 197

8.2 Feature extraction and arc decomposition . 199

8.3 ΣΛ parameter reconstruction using features from CSFs and Euler spiral de-

rived arcs. 200

8.4 Key points and max speed points . 201

8.5 Reconstruction of vector input initially built with piecewise Bézier curves . . . 204

8.6 Reconstruction of a graffiti signature "JANKE" from the Graffiti Analysis database205

8.7 Additional examples of graffiti tag reconstructions 206

8.8 Parametric variations of a reconstructed graffiti 207

8.9 Example of content generation: Tags . 208

8.10 Comparison of smoothing and stylisation methods 209

8.11 Comparison of ΣΛ and path-constrained MJ reconstructions of a trajectory

generated with MIC . 210

9.1 Network architecture. 219

9.2 Dynamic parameters generated over user specified virtual targets. 221

9.3 Kinematic analogy implemented with KPP models trained on a single example 222

9.4 KPP model trained on a series of multiple strokes. 223

9.5 Reconstruction of the training example with a KPP model trained with multi-

stroke sequences and one trained on single stroke sequences 224

9.6 KPP model trained on a single stroke sequence and primed on a specific stroke 225

9.7 Dynamic parameters predicted with a model trained on four examples 225

List of Figures 19

9.8 Variations generated by varying the random number generator seed prior to

sampling a model trained on multiple examples. 226

9.9 Kinematic style transfer of user drawn traces. 226

9.10 Less satisfactory case for the stylisation of a complex tag. 227

9.11 Kinematic style transfer between different examples of tags. 228

9.12 Kinematic analogy implemented with VARMA. 229

9.13 Degradation of the parameter predictions with VARMA as the number of ex-

ample strokes increases . 231

10.1 From 2D letterforms to strokes with CFSs . 233

10.2 Example glyph segmentations. 236

10.3 High level overview of the segmentation and stylization of a glyph outline. . . 236

10.4 CSFs and related features for a capital letter “A”. 238

10.5 Branch salience computation. 240

10.6 Association fields for two corners in a letter T with corresponding colored val-

ues α. 241

10.7 Valid and candidate split selection. 242

10.8 Computation of local convexity for different concavity configurations and bi-

sectors. 243

10.9 Branch and fork assignment of a split, depending on its branch intersections. . 245

10.10 Label propagation in similar areas, each with two forks, but giving different

branch groups. 247

10.11 Topological junctions. 248

10.12 Morphological junctions indicated by their respective forks. 249

10.13 Iterative junction identification and stroke label propagation for a letter “K”. . 250

10.14 Ψ-junction disambiguation. 252

10.15 Significance histograms for different junctions. 255

10.16 Stroke paths. 258

10.17 Junction adjustment. 259

10.18 Ligature adjustment. 259

10.19 Adjusted stroke paths for three different glyphs. 260

10.20 Faces and edges of Q̄ for different junction types. 261

10.21 Stroke areas for the letter “R” in different fonts. 261

10.22 Quantitative evaluation with the make-me-a-hanzi dataset. 262

10.23 Stroke decomposition of silhouettes. 263

10.24 A glyph with a circular hole segmented at different scales. 263

11.1 Font stylisation with our methods. 267

20 List of Figures

11.2 Hershey font stylisation. 268

11.3 Font stylisation with skeletal strokes. 268

11.4 Simplification and schematisation. 269

11.5 Mapping to flexures for simplified and schematised spines. 270

11.6 Structural adjustment steps for a schematised letter “A”. 271

11.7 Structural steps for a schematised letter “A”. 271

11.8 Calligraphic stylisations with schematisation. 272

11.9 Calligraphic stylisations of the string “AUTOGRAFF”. 273

11.10 Mapping to flexures for simplified and schematised spines. 273

11.11 Different tag-like stylisations of the word “RASER”. 274

11.12 Structural adjustment steps for a kinematic realisation of a schematised “A”. . . 274

11.13 Outline-based graffiti stylisation. 275

11.14 Progressing smoothing of a letter “P” with a corner. 275

11.15 Per-segment width profiles. 275

11.16 Structural adjustment steps for the outlined strokes of a schematised “A”. . . . 276

11.17 Combining schematisation with calligraphic stylisation. 277

11.18 Animating the drawing of a stylized “R”. 278

11.19 Abstract stroke-based animations. 278

11.20 Stylisation based on similarity between stroke areas. 279

11.21 Synthetic graffiti in the virtual and real world. 280

12.1 Calligraphic stylisation of the word “CAGD”. 282

12.2 Comparison of dynamic B-splines with MIC. 287

12.3 Sketching graffiti letters by hand. 289

12.4 Example of minimum jerk and inverted speed profiles together with the corre-

sponding static stimuli. 290

D.1 Example segmentations from the make-me-a-hanzi dataset. 306

D.2 Font: Moderne Fraktur. 307

D.3 Font: Bickham Script. 307

D.4 Font: Apollo. 308

D.5 Font: Arial bold. 308

D.6 Font: Adobe Arabic bold. 309

D.7 Font: Adobe Hebrew bold. 309

D.8 Font: PACL. 310

D.9 Font: Georgia. 310

D.10 Font: Kazuraki. 311

D.11 Font: Adobe Bengali Bold. 311

List of Tables

3.1 The six properties of the “most pleasing curve” according to Knuth (1979). . . . 51

3.2 Summary of principles that have been observed in human upper limb move-

ments. 57

3.3 Summary of movement representations. 62

3.4 Font/calligraphy/handwriting generation and synthesis. 72

3.5 Curvature saliency measures . 78

3.6 Main perceptual grouping principles. Refer to the chapter of Brooks (2015) for

a more detailed exposition of these and a series of other more novel principles. 87

3.7 Summary of the main principles used for the decomposition of objects into

parts. 89

B.1 Compositional functions . 298

B.2 Form functions . 299

Chapter 1

Introduction

The purpose of this thesis is to develop a set of parametric primitives and methods for the

computer aided design of graffiti art. What do I mean by graffiti art? The term graffiti gen-

erally refers to any form of writing done on a surface without authorisation (Kimvall, 2007).

In this study I will use this term specifically to refer to the art movement — also known as

Writing, Aerosol Art, Spray Can Art – that revolves around various forms of stylisation and

abstraction applied to the letters of a tag, a pseudonym for an artist who is often referred to

as a (graffiti) writer. This art form emerged in the late 1960s when tags started to appear on

the surfaces of the New York City subway (Kimvall, 2014; Ferri, 2016), and developed into a

rich and complex art form that can be seen today on walls and surfaces around the globe.

The methods presented in this thesis are not specifically aimed at producing real instances

of graffiti art, but rather at facilitating the conception and generation of graffiti designs with

computational techniques.

Graffiti art evolved from initially simple signatures to complex and colorful letter de-

signs. These designs distill a number of graphic influences, ranging from typography and

calligraphy to comics and science fiction just to name a few. The interplay of these influ-

ences, together with the mutual inspiration between different artists can be seen as a form

of “Chinese whispers of style” 1 that has produced the highly distinctive aesthetic that char-

acterises graffiti art as it can be seen today. The cross-pollination between graffiti and other

areas in graphic design and illustration has always been a constant (Arte, 2015). In turn, cur-

rent instances of graffiti art can be seen on record covers, in advertisements and in fashion,

as well as textured on the walls of computer generated environments in games and in movies.

The motivation for this thesis is both artistic as well as technical and practical. From

an artistic standpoint, the work stems from my personal background as a graffiti artist and

from my desire to develop a set of tools that facilitate the production of digital artworks with

1Chinese whispers is a game in which a message is transformed as it is passed from one player to another. This
analogy was mentioned during a talk on graffiti art at the 2019 Tag Conference in Amsterdam.

24 Chapter 1. Introduction

a specific and personalised stylistic signature. From the technical and practical standpoints,

I propose that the computational re-creation of graffiti’s main stylistic features is a valuable

addition to the toolset of digital creatives, which makes the methods developed in this thesis

generally useful tools across the 2D computational design space. Graffiti art is an intrinsic

element of many contemporary urban-landscapes. As a result, an automatic graffiti genera-

tion system is a useful addition to procedural content generation (PCG) pipelines and is likely

to contribute to a richer and more realistic rendition of computer generated urban environ-

ments in video games as well as movies. Finally, as suggested by Hertzmann (2010), I argue

that the computational study of an art form implies making hypotheses about the processes

involved in its creation, which establishes the ground for the development of a theory of art

that is generative as opposed to only being descriptive (Hertzmann, 2010).

1.1 A short overview of graffiti styles
To build a more precise and more visual context for the methods that will be discussed in this

thesis, it is useful to briefly cover some of the main aspects that characterize this art form and

its different instantiations. Since its beginnings, graffiti has evolved into a multitude of styles,

which differ depending on the individual artist, but also depending on a geographic location,

visual culture, or to a required speed of execution.2 In the following list, I will limit myself to a

description of some fundamental styles in the category of the most traditional and influential

form of graffiti art, such as could be seen in the 1980s on the streets and transit system of New

York City.

1.1.1 Tags

In its most elementary, but fundamental, instantiation, graffiti art takes the form of a rapidly

executed and highly stylised signature that conveys the artist’s identity, style and skill. This

form of graffiti is called a tag, which is the same term also used to denote a graffiti artist’s

pseudonym. The act of executing a tag is commonly referred to as tagging or bombing, where

the latter implies executing many tags illegally.3 Tags are meant to be executed quickly and

in great quantity, usually using a marker or spray paint; their visual quality strongly depends

on the speed and spontaneity with which they are executed. The manner in which a tag is

written is commonly referred to as “handstyle” (Ferri, 2016) and identifies the artist’s personal

style and skill. A well executed handstyle is the result of years of practice, and its visual quality

is directly related to the spontaneity in which the movements are executed. This is reflected

in graffiti jargon with the term flow, which denotes the quality of execution of a tag.

With experience, tags are written more rapidly, and the stylised gestures involved in their

creation are interiorised, becoming “muscle memory”, which ultimately results in more fluid

2For example, depending on the local tolerance of the authorities to the art form.
3It should be noted that this study involves the stylistic elements of graffiti and not the social, legal and political

implications.

1.1. A short overview of graffiti styles 25

Figure 1.1: Examples of tags. From top-left: TWISTER, AMAZE, EKSER, many tags in Lon-
don, CRUIZER, CANSER, ENS. Most of the images are courtesy of https://www.
instagram.com/handstyler/.

movements and spontaneous forms. The assimilation of these gestures is such, that it also

influences a graffiti artist’s handwriting, which is often recognisable with distinctive traces

that resemble the ones of a tag .4 The resulting handstyle becomes a personal stylistic signa-

ture of the artist, which is often transmitted to the curved portions of more complex forms of

graffiti lettering (Ferri, 2016).

A note on tags and calligraphy. Calligraphy is the “art of beautiful writing” 5 and graffiti

art is sometimes referred to as “urban calligraphy” (Arte, 2015), a term that is particularly

appropriate for the case of tags. Graffiti artists Mode 2 (Craveiro, 2017) and Dado (Ferri, 2016)

both compare the practice of writing tags to “shodo”, the ancient art of Japanese calligraphy.

Indeed, it is a persistent practice, and the resulting quality of a movement, that ultimately

determines the visual quality of both calligraphy (Briem et al., 1983) and graffiti tags (Ferri,

2016). Because of this close relationship between tags and calligraphy, I will generally refer

to both their respective traces as “calligraphic”.

4I can speak from experience as this is also the case for my own handwriting.
5The term calligraphy originates from the Greek words kallos (beauty) and graphein (to write)

https://www.instagram.com/handstyler/
https://www.instagram.com/handstyler/

26 Chapter 1. Introduction

Figure 1.2: Examples of different steps of preparation of a graffiti piece. Left: a preliminary sketch is
usually made with a pen or marker on paper. Middle: the sketch is transferred to a surface.
Right: it is finally filled, colored and outlined.

1.1.2 (Master-)Pieces

The first instances of tags were written with a marker and often consisted of a name followed

by a number, indicating for example the borough to which the writer belonged.6 With the

competition to gain visibility, graffiti writers started to use spray paint instead of markers

and outlines were traced around the thickened strokes of the tag.7 The tag slowly evolved

into what is known as a “piece”, a term that is used as an abbreviation for “masterpiece”. A

nice conceptual analogy of the transition from tag to piece is given by Italian graffiti writer

Alessandro “Dado” Ferri (Ferri, 2016), who notes that in a piece, the writing sign of a tag be-

comes a “de-sign”, resulting in a combination of forms that nevertheless recalls the structure

and fluent gestures that compose a tag.

Many graffiti styles can be described through a composition of basic building blocks

that are combined or fused to reveal the stylised outline of one or more letters. These build-

ing blocks vary from elongated geometric forms often referred to as “sticks”, to more rounded

forms known as “softies” that are traced with gestures similar to the ones that would be used

for a tag (Figure 1.3). These components are often combined with other decorative elements,

such as stylised arrows, stars, hearts and bars or “doodads”, which are used to customise

letter forms, to improve compositional balance, or to increase the senses of dynamism and

movement in the piece. According to New York writer Rammelzee, the letter is “armed”,

preparing it for combat. All these visual elements are usually combined in ways that are

evocative of an abstracted three dimensional composition, with overlapping, looping and in-

tertwined/interlocking parts (Figure 1.4) and with extrusion effects that do not necessarily

follow the strict rules of projective geometry.

The procedure used to design a graffiti piece usually starts from sketches made with a

pen or a marker on paper (Figure 1.2, left). This is where a writer typically practices and

studies different combinations and stylisations of letterforms, which are then transferred as

6The first tags are attributed to “TAKI 183”, a foot messenger in New York who lived on 183rd street.
7The first example of this approach is attributed to the early graffiti artist “Super Kool 223” (Arte, 2015).

1.1. A short overview of graffiti styles 27

(a) (b) (c)

Figure 1.3: (a) Examples of a stick (top, ending with an arrow) and a softie (bottom), and two pieces by
EGS (Helsinki, Finland) featuring mostly sticks (b) and softies (c). The graffiti images are a
courtesy of the artist.

Figure 1.4: Self-overlapping loops that can be seen in graffiti pieces. This is a reproduction of examples
given by Ferri (2016) , who calls this an “adjacency” form function. The loops are created
with the stroking method presented in Chapter 6.

Unstylised Stick Bubble Block Marshmallow

Platform Combo Arrow Puzzle Machine

Figure 1.5: Examples of the letter “A” in an interpretation of the fundamental styles as described by
(Ferri, 2016). The “unstylised” is a prototype letterform. Also these examples have been
created with a rapid point and click procedure using the method presented in Chapter 6.

28 Chapter 1. Introduction

a larger sketch made with spray paint on a surface (Figure 1.2, middle). The sketch and (at

times) also the background are then filled with one or more colors and more or less complex

decorative effects. Finally, a final outline is traced to reveal the stylised letterforms. Often

additional effects as extrusions and highlights are added to the outline for additional visual

impact (Figure 1.2, right) .

Each graffiti writer develops their personal and often immediately recognisable style

(Figure 1.6). However, many works of graffiti can be traced back to a number of stylistic “mod-

els” (Ferri, 2016), many of which were introduced in New York between the 1960s and the

1980s. Ferri (2016) categorises nine such styles (Figure 1.5) that vary from the simple “stick”

style, to the rounded “marshmallow” style, to the mechanical looking “machine” style. He

has analysed these styles through a combination of “compositional” and “form” functions

that are listed in Appendix B. Some of these functions are indirectly implemented with the

methods described in this thesis. Ferri also makes the example of an “unstylised” style, con-

sisting of prototypical letter forms such as the ones that would be seen in a font such as Arial

or Helvetica. Arte (2015) goes further by identifying the influence of specific typefaces on the

origin of certain graffiti styles.

The most extreme form of graffiti stylisation is known as “wild style”, in which most of the

stylistic elements discussed above can be used together, resulting in highly abstracted letter-

forms. Letters are distorted, fragmented and interlocked in complex ways, often to the point

of becoming unreadable to the untrained eye. It can be argued that graffiti pieces are partic-

ularly well suited to be studied through computational techniques. As a matter of fact, some

forms of graffiti stylization are themselves inspired by technology and computer generated

imagery. For example some pioneering forms of Wild Style were characterized by mechan-

ical looking forms and where given names as “Mechanical Style” or even “Computer Rock”

(Cooper and Chalfant, 1984).

1.1.3 Other graffiti styles and elements

The description above is a simplified overview of a much more complex taxonomy of styles,

which have evolved throughout the development of graffiti art. For an exhaustive and in

depth categorisation of different graffiti styles, together with an analysis of their structure and

development, I suggest the excellent treatise of Ferri (2016) and Arte (2015). In the context

of this thesis, and for a general understanding of the graffiti that can be typically seen in a

city, it is useful to briefly summarise a few more stylistic categories: throw ups, puppets and

abstract.

Throw ups. A rapidly executed and often rounded outline representation of the tag, often

also quickly filled in with a single colour. While also intended to be executed rapidly and in

great quantity, throw-ups are perhaps the most perceptually complex form of graffiti art. Let-

ters are abstracted to their essence and executed with a minimum number of highly stylised

1.1. A short overview of graffiti styles 29

Figure 1.6: Graffiti. First row: BATES (Copenhagen, Denmark), MILK (Munich, Germany); photos are
courtesy of https://www.instagram.com/johnnation/. Second row: SEL (Haar-
lem, Netherlands), SMART (Florence, Italy). Third row: ENS+STAM (Florence, Italy), PETRO
(London, UK). Photos are courtesy of the artists or taken by me.

strokes, while maintaining their legibility (Figure 1.7).

Figure 1.7: Examples of throw-ups: DUEL (NYC, USA), SM(ART) (Florence, Italy), GREY (SF, USA). Pho-
tos courtesy of the artists.

Puppets. Pieces are often accompanied by caricatures of animals or persons that are com-

monly known as puppets. Often these caricatures are executed in a stylised manner, with the

same gestures, forms and visual conventions that characterise stylised graffiti letters (Ferri,

2016). Sometimes that stylisation is such that the puppet also follows a structure similar to a

letterform (Figure 1.8, left).

https://www.instagram.com/johnnation/

30 Chapter 1. Introduction

Figure 1.8: Examples of puppets: POPZ 100 (Nottigham, UK) and CMP (Copenhagen, Denmark), cour-
tesy of https://www.instagram.com/johnnation/; ENS (Florence, Italy).

Abstract Style. In some cases the same stylistic elements that are used in Wild Style or tags

can be combined freely, without following the structure of a letter. This results in an abstract

composition that has recognisable aesthetic properties, similar to graffiti, but does not have

any specific representation of lettering (Stowers and Goldman, 1997) (Figure 1.9).

Figure 1.9: Examples of abstract styles. Left: LOKISS (Paris, France); courtesy of https://www.
instagram.com/johnnation/. Right: KEIN (Florence, Italy), courtesy of the artists.

1.2 Graffiti in the Digital and Virtual Realms
With its proliferation, graffiti art has become increasingly present in cities around the globe.

This presence has become also digital, with traces of graffiti appearing in a variety of com-

puter generated content ranging from graphic design to urban scenes in games and in

movies.

1.2.1 Graffiti in Graphic Design

Arte (2015) draws a parallel between the development of certain graffiti styles and the popu-

larity of typefaces at the same time and geographic location. With time, this influence has be-

come mutual and the visual elements of graffiti art can be found in instances of typographic

https://www.instagram.com/johnnation/
https://www.instagram.com/johnnation/
https://www.instagram.com/johnnation/

1.2. Graffiti in the Digital and Virtual Realms 31

(a) (b)

Figure 1.10: Editing graffiti with conventional vector graphics techniques. (a) Attempt at producing
a tag-like letter “E” with Bézier curves. The procedure requires placing control points at
locations that are not easily related to the movement that would be executed to produce
the trace (left). Editing the location of a control point is likely to result in a curve that does
not appear natural (right). (b) Attempt at recreating a loop, similar to the ones shown in
Figure 1.4. Reproducing the overlap requires manually removing the dashed segments on
the right.

and graphic design (Craveiro, 2017), as well as advertisement, record designs and fashion. In-

deed, a number of contemporary graphic designers and typographers come from a previous

practice-based experience in graffiti art (Craveiro, 2017; Kimvall, 2007).

Vector graphics software is often the tool of choice when it comes to designing typogra-

phy or graphics for print. However, designing graffiti or calligraphy, can be challenging with

the conventional tools of Computer-Aided Geometric Design (CAGD). Tags for instance, are

the result of highly skilled and well-practiced movements. Reproducing their traces usually

requires either (i) an equally skilled movement executed with a digitiser device or (ii) the care-

ful selection of a large number of curve control points, the location of which can be highly

unintuitive (Figure 1.10.a). A similar issue is observed by font designer Charles Bigelow 8 for

the case of fonts that mimic calligraphy or handwriting; he notes (Wang, 2013):

“I am sometimes sorry to see that the spirit and grace of the moving hand and

tool, whether pen, brush, or reed, are lost in modern typographic technology,

but now that the basic problems of outline font technology are solved, perhaps

someone in the future will work on restoring the human action.”

Similar challenges hold also for the design of graffiti pieces. In particular, conven-

tional drawing applications usually assume a strict back-to-front ordering of geometry (Fig-

ure 1.10.b). As a result, reproducing the self-overlaps and interweaving that characterises

graffiti stylised letters, often requires subdividing a design into a number of unintuitive parts.

This results in a “vector soup” that is often difficult to edit and to manage. Ultimately, these

8Charles Bigelow has designed a number of widely used digital fonts, among which Lucida, which is used also in
this document to typeset equations

32 Chapter 1. Introduction

Figure 1.11: Examples of graffiti in the videogame GTA. On the left, GTA V, with a throw-up by NYC
graffiti artist COPE2 (stylistically high quality) textured in different parts of the virtual en-
vironment. On the right, interactive tagging session in GTA Sant Andreas.

issues hinder the creative design process, thus not always justifying the expression “computer

aided design”.

1.2.2 Graffiti in Games and Movies

In contrast with more traditional art forms, graffiti unfolds on the surfaces of an urban en-

vironment. As a matter of fact, today graffiti art can be considered as one distinctive feature

that characterises urban landscapes around the globe. Likewise, the same feature is also of-

ten present on the textured surfaces of buildings and objects that can be seen in computer

generated urban scenes, in games as well as in movies.

Graffiti content for games is usually prepared by texturing photographs or by specifi-

cally commissioned graffiti art (real, or painted on the computer with tools such as Adobe

Photoshop). This method has various limitations, as the amount of work needed is directly

proportional to the size of the game world, and the graffiti images have a fixed resolution

that is constrained by memory limitations. An illustrative example of this approach can be

found in the Grand Theft Auto game series, which features one of the largest in-game urban

environments to date and extensively uses graffiti as an aesthetic in-game element and land-

mark feature. Although graffiti art is an intrinsic in-game element of the game series and its

quality is greatly improving across releases, we can still notice a limited variety of low resolu-

tion tags and pieces which are repetitively textured across the walls of the game (Figure 1.11,

left). This repetition is unrealistic, since human movements are characterised by an intrinsic

variability (Harris and Wolpert, 1998) and so are the traces of multiple tags or drawings. The

game player is also enabled to produce their own graffiti (Figure 1.11, right), but this process

is also highly unrealistic, with the image of a piece slowly fading in while the virtual character

performs random-looking arm movements.

1.2. Graffiti in the Digital and Virtual Realms 33

Figure 1.12: Left, computer generated graffiti in the movie Baby Driver (2017). Middle, human made
alien graffiti in the movie Alien Nation (1988). Right, hypothetical Klingon graffiti for the
word “writing” generated with the system described in this thesis.

Similar points hold also for procedural content generation (PCG) in movies. One illus-

trative example is the movie Baby Driver, in which the introductory titles, as well as many

movie scenes, feature computer generated graffiti with sentences that pertain to the plot of

the movie (Figure 1.12, left). In the context of science fiction, the 80s movie Alien Nation

featured instances of “Tenctonese” graffiti, made by a race of alien visitors stranded on earth

(Figure 1.12, middle). In a hypothetical movie production setting, one could then wonder:

what would graffiti look like if it were made by Klingon9 visitors instead? A suitably built pro-

cedural content generation system can provide an automatic answer to this kind of question

(Figure 1.12, right). Furthermore, such a system has the potential to work with procedurally

generated and even extremely large environments for which the production of realistic and

convincing graffiti textures would require a prohibitive amount of memory storage and hu-

man resource.

More generally, the development of PCG systems capable of creating, or evaluating, con-

tent with a specific style, let it be architectural, artistic or other, is still an open area of re-

search for the PCG community (Togelius et al., 2013). Similar challenges hold for the area of

Non Photorealistic Rendering and Animation (NPAR) (Gooch et al., 2010), a subfield of com-

puter graphics that is aimed at the simulation of artistic techniques and styles and at clarity

of representation (Kyprianidis et al., 2013). As a result, graffiti art offers an interesting testbed

for techniques that are relevant to both the domains of computer graphics and PCG: it is

an artistic process and style that can be simulated using techniques that are relevant to the

NPAR community, but it develops and unfolds in an urban environment; therefore it is highly

suitable for being generated and studied in the context of virtual 3D environments.

1.2.3 Computer Aided Graffiti Design

Recently, some work has been done at the intersection of graffiti art with technology. Cassidy

Curtis (2002) developed the Graffiti Archeology project, an online platform that visualises a

timelapse of graffiti being painted on a selected number of walls. Jurg Lehni has developed

9An alien race in the Star Trek movie series

34 Chapter 1. Introduction

HEKTOR, a Cartesian drawing machine that is able to mechanically trace vector images with

a spray can on a wall (Lehni, 2004). The Graffiti Analysis project by Evan Roth has resulted in a

series of low cost motion capture devices that allow to easily record or digitally reproduce the

gestures done during tagging (Roth et al., 2009). This has resulted in collectives of hackers and

artists known as Graffiti Research Labs (Keough, 2010) that develop technologies that enable

the materialisation of graffiti with do-it-yourself (DIY) devices. One spinoff of this project has

resulted in the EyeWriter system (Tempt1 et al., 2009), which has allowed a paralised graffiti

artist TEMPT1 to create graffiti with the movements of their eyes. New York graffiti artist

KATSU (Holland Michael, 2015), and others (Vempati et al., 2018), have developed drones

that can reproduce large scale graffiti with spray paint on any surface. While these methods

provide innovative ways to materialise digitised traces with the medium typical of graffiti art,

they do not actually provide computational means to generate traces that resemble this art

form or to assist their generation within a CAGD pipeline.

With the methods developed in this thesis, I seek to address this gap, as well as some of

the previously posed challenges, by:

1. Developing a set of primitives that can be combined to rapidly define curves and de-

signs that are similar to calligraphy or to graffiti art.

2. Developing an interface for editing these primitives, which is similar to the one con-

ventionally used curves in CAGD applications, and with a representation that is intu-

itive to edit and to manage.

3. Developing a system where a user is able to insert a string of text in a language of choice,

to reproduce the string with a graffiti stylised output, to render the output at arbitrary

resolutions and to edit the output with the same user interface introduce above.

The system should then:

• Produce content that can be varied in ways that reproduce the variability that can be

observed in multiple instances of drawing or writing made by a human.

• Produce content that intrinsically captures a plausible sequence of movements, sim-

ilar to the one that would be followed by a human when producing an artwork. This

enables the generation of realistic animations of the graffiti production process and its

reproduction with robots or other fabrication devices.

To this end, I propose a two-level hierarchical approach to synthetic graffiti generation.

The first level defines a set of stroke primitives, building blocks that can be easily varied and

combined to reproduce different kinds of graffiti stylised letters and compositions. The sec-

ond level, recovers these primitives from existing geometric inputs, such as traces made with

1.3. Part I: Graffiti primitives 35

(a) (b) (c) (d)

Figure 1.13: A few different kinds of strokes.

(a) (c)(b)

Figure 1.14: Example stroke stylisations of a motor plan for the letter “R” (a). (b) two calligraphic styli-
sations of the motor plan. (c) two outline stylisations of the motor plan.

a digitiser device or the outlines of a font. These geometric inputs then become a seed for the

genesis of different kinds of graffiti stylisations. The thesis is similarly organised in two parts

that are outlined in the next two sections.

1.3 Part I: Graffiti primitives
Some of the previously discussed stylistic elements of graffiti already suggest their computa-

tional counterparts. For example, there is a wealth of computational models of human arm

and hand movements to choose from, when it comes to mimicking the skilled gestures that

are used to produce a tag. Also, a reader that is familiar with 2d computer graphics techniques

is likely to notice a similarity between fundamental graffiti building blocks such as the “stick”

or the “softie”, and well established vector based stroking methods such the skeletal strokes

method of Hsu and Lee (1994).

In order to treat different graffiti stylisations with a common representation, I propose

one simple guiding concept, that is shared by all the methods developed in this thesis: Dif-

ferent stylisations of a letterform can be described with a bi-level representation, consisting

of a structural and a stylistic component.

The structural component is a schematic representation of a letterform in terms of a mo-

tor plan consisting of a sparse sequence of vertices connected by polylines. It describes the

layout and order of a series of drawing movements that can be used to trace the letterform. In

practice, the polylines used are similar to the control polygons typical of CAGD applications,

and thus both can be specified and edited in a similar manner.

The stylistic component consists of parametric stroke primitives that are constructed

along a motor plan and produce different letterform stylisations. A stroke can embody the

36 Chapter 1. Introduction

trace of ink or paint left with a calligraphic gesture, or a depiction of such a trace in the form

of an image or a stylised outline (Figure 1.13). A stroke stylisation of a motor plan consists

of a series of strokes constructed along the vertices of a motor plan (Figure 1.14). Part I of

this thesis describes a set of stroke primitives that result in stroke stylisations that resemble

calligraphy and graffiti art. For our use case, I categorise stroke stylisation into two types:

calligraphic stylsation (Figure 1.14a) and outline stylisation (Figure 1.14b). The first can be

used to depict tags and the second to depict pieces.

1.3.1 Calligraphic stylisation: Movement and tags

A tag can be considered as an elementary “atom” of graffiti art and the way in which it is writ-

ten often impacts also the appearance of other forms of graffiti stylisation. It follows that tags

are also a suitable starting point for the development of the proposed set of graffiti primitives.

That being the case, let’s briefly examine some examples of tags, for which artist Evan Roth

has conveniently isolated a number of letters of the alphabet, within his project “Graffiti Tax-

onomy” (Roth, 2011). Each letter instance is made with a distinct handstyle, and within each

letter it is possible to identify subsets that share a similar underlying structure, but are yet ex-

ecuted with clearly different handstyles. For example, in Figure 1.15a it is possible to observe

a number of capital “N”s, a number of lower case “n”, where one such case is equivalent to a

mirrored N.

Considering each of these subsets in isolation, leads to a concept that I call “style as kine-

matics”, in which a number of different stylisations of a letterform can be seen as variations

of a movement that follows a common motor plan. This is consistent with the previously

introduced bi-level representation, with the stylistic component becoming a kinematic com-

ponent that describes the hypothetical trajectory of a writing tool.

To implement this concept, I propose a movement centric approach to curve genera-

tion, in which a curve is defined through a physiologically plausible simulation of a (human)

movement underlying its production rather than by an explicit definition of its geometry. The

implementation relies on the systematic application of methods and principles from the do-

mains of handwriting analysis and synthesis (Plamondon et al., 2009), computational motor

control (Rosenbaum, 2009) as well as robotics (Calinon, 2016b). I argue that, with an ap-

propriate parameterisation, some of these methods become a useful tool to generate tags

with a procedure that is similar to established CAGD methods, but with the additional ad-

vantage of capturing both the geometry and kinematics of a human made trace with a single

integrated representation. Chapters 4 and 5 demonstrate two different but complementary

methods that can be used to implement this procedure and to automatically generate strokes

that closely resemble the ones that would be seen in tags or calligraphy produced by human

experts.

Chapter 4 presents an extension and an application of the Sigma Lognormal model, a

1.3. Part I: Graffiti primitives 37

(a) (b) (c)

Figure 1.15: Common letter structures. Some examples of the letters “N” (a) and “R” (b) isolated from
tags by Evan Roth in his graffiti taxonomy project. (c) Two motor plans that can be used to
characterise the emphasised letters in (a) and (b). Image courtesy of Evan Roth.

model of handwriting movements that is widely used for handwriting analysis (Diaz-Cabrera

et al., 2018) and synthesis (Plamondon et al., 2014) applications. This model describes hand-

writing movements with a set of parameters that have a well defined physiological interpre-

tation. As a result, perturbations of these parameters result in variations of a trajectory that

resemble the ones that can be observed in real instances of handwriting or drawing. The re-

sulting trajectories are kinematically similar to the ones produced by a human; this chapter

also demonstrates how this property can be exploited to generate convincing stroke render-

ings and animations.

Chapter 5 presents a similar interface with an approach based on optimisation, in which

a user explicitly defines the desired variability/precision of a movement. The method pro-

duces a distribution of trajectories rather than a single one and the trajectories are generated

with an optimisation, which rewards a tradeoff between the required precision and smooth-

ness of a movement.

These two methods can be used to generate and stylise strokes that appear hand drawn,

while giving a high level of parametric control to the user. I argue that this approach has, by

definition, a series of useful properties such as:

• Providing a representation of variability that intrinsically built in the abstract represen-

tation of a pattern. This allows to reproduce the variations that are similar to the ones

that can be seen in multiple traces made by one or more artists through simple pa-

38 Chapter 1. Introduction

Figure 1.16: Examples of a letter “N” isolated from various pieces.

rameter perturbations (Chapter 4) or stochastic sampling of a “trajectory distribution”

(Chapter 5). This property can be exploited for artistic/design purposes, to but also for

data augmentation in machine learning applications.

• Generating kinematics that are similar to the ones that would be observed in a human

movement. This can be exploited to generate realistic stroke animations and natu-

ral looking animations for virtual characters or robots/fabrication devices (Berio et al.,

2016) that embody the drawing process, but also to produce more realistic renderings

of artistic traces (Chapter 4).

• Providing a flexible and high-level feature representation. This representation can be

exploited (i) to simplify procedural generation methods (Chapter 5) and (ii) for the im-

plementation of data-driven stylisation methods using generative models (Berio et al.,

2017a) that can be trained with fewer samples (due to the possibility of easily gener-

ating augmented data) and the output of which can be manipulated in a meaningful

manner (e.g. through parametric manipulation and user interaction).

The proposed movement centric approach to curve generation adopts an “embodied

aesthetics” hypothesis (Freedberg and Gallese, 2007). This maintains that the observation of

static marks or traces left by a drawing movement activates motor areas of the brain (Freed-

berg and Gallese, 2007; Longcamp et al., 2003), inducing an approximate mental simulation

of a likely generative movement (Freyd, 1983; Pignocchi, 2010; Leder et al., 2012). It is also hy-

pothesised that such a brain stimulation can influence the aesthetic appreciation of the static

trace (Leder et al., 2012). This leads to the conjecture that a similar phenomenon should oc-

cur with synthetic traces produced with an appropriately simulated movement.

1.3.2 Outline stylisation: Parts and pieces

A similar observation to the one made for tags, can also be made for the stylised letter outlines

of graffiti pieces (Figure 1.16). In this case, different stroke stylisations of a motor plan can be

viewed as an assembly of parts that are fused to produce an outline. As previously mentioned,

1.3. Part I: Graffiti primitives 39

these parts are often overlapped and intertwined in a way that is difficult to reproduce as a

simple back-to-front composition.

Chapter 6 presents a variant of the skeletal strokes algorithm (Hsu and Lee, 1994) that is

especially built to reproduce these characteristic features of graffiti art. Similarly to the pre-

viously defined methods, a user can define a stroke with a sparse sequence of points, but this

method results in a stylised outline rather than a single trace. Variably smooth outlines are

produced by also synthesising a movement, specifically with the same optimisation-based

method that is used Chapter 5 to reproduce tags. This results in a parameter space that cov-

ers a variety of different graffiti strokes and styles.

The outlines of one or more strokes can be combined interactively with local union,

layering and self-overlap effects, while always maintaining the underlying stroke structure.

The method then produces vector output with no artificial artwork splits, patches or masks

to render the non-global layering, where each path of the vector output is part of the desired

outline. This results in an output that can be reproduced on a screen, but also with robots

or other kinds of fabrication devices. Finally, the output can be rendered with different fill-

ins, highlights and decorative effects that resemble the ones that can be often seen in graffiti

pieces.

1.3.3 Overall contributions of Part I

The first part of the thesis results in a set of parametric stroke primitives that facilitate rapid

authoring of graffiti-stylised letters and designs. These primitives are specified by means of

a motor plan, a simple structural representation consisting of sparse sequences of points and

thus easy to edit with a point and click procedure. Different stylisations of the motor plan are

then produced through parametric variations of the stroke primitives. This representation

is also helpful when used in combination with procedural generation methods, since the

procedures are left with the simplified task of generating sparse sequences of points, which

can be subsequently transformed into a variety of stylised outputs.

These methods are conceived with the goal of reproducing instances of graffiti art or

calligraphy. However, the resulting contributions extend to the more general spectrum of

artistic applications of CAGD, namely:

(a) A movement centric approach to curve design, aimed at generating, animating and ren-

dering traces that appear written or drawn by hand.

(b) A set of geometric primitives with a built-in representation of variability, which can

be used to produce variations similar to the ones seen in multiple instances of draw-

ing/writing made by a human.

(c) A novel vector-based stroking method designed to enable strokes with self-overlaps and

non-global layering effects.

40 Chapter 1. Introduction

1.4 Part II: Recovering graffiti primitives from geometry
With a set of stroke primitives in hand, the second part of the dissertation is focused on a “re-

verse” procedure with respect to the first: recovering plausible combinations of stroke prim-

itives that reconstruct a given input geometry. This procedure transforms unstructured ge-

ometric inputs into a parametric representation that thus enables all the functionalities that

are discussed in part I of the thesis. The process of procedural graffiti generation is thus trans-

formed into one of parametric stylisation, with a range of geometric inputs serving as source

of possible structures that can be stylised and transformed into different kinds of graffiti.

1.4.1 Geometric input analysis

I distinguish two broad categories of geometric data and two corresponding datasets, which

I consider particularly useful for the task at hand of graffiti content generation:

The first type of geometric data consists of tags, handwriting, drawing, or arbitrary vec-

tor paths that are digitised as ordered sequences of points.10 One particularly useful dataset

of this kind is known as the “Graffiti Analysis Database” (Roth et al., 2009); the database

contains thousands of tags, recorded with a variety of devices ranging from tablets to DIY

marker-based motion tracking systems. The database provides data that is already a poten-

tially useful source of graffiti content. However, the data has varying sampling quality and

the point-sequence format is difficult to modify or edit in any meaningful way.

The second type of geometric input consists of the outlines of one or more glyphs.. A

glyph is usually a letter of the alphabet or a readable symbol of a given writing system, but

it can also represent other kinds of “non-letter” objects such as a silhouette or an abstract

pattern. A collection of glyphs with a consistent style is usually referred to as a font. Using

glyph outlines as a geometric input results in an approach that is consistent with the idea pro-

posed by Arte (2015) that the origin of certain graffiti styles can be related to specific fonts.

Publicly available fonts provide an almost inexhaustible source of letterforms, in a variety

of languages and writing systems, and with a variety of different styles and structures. Re-

covering a structural representation from such outlines is not trivial (Wang, 2013). However,

recovering one that is compatible with the parametric methods described in Part I enables

the generation of graffiti stylisations with an equally varied structural and stylistic range.

In order to treat this diversity of inputs, I propose an approach that is grounded on well-

studied principles of visual perception and that relies on a geometric analysis only, thus not

requiring training data or predefined templates. The analysis procedure builds on a set of

“Curvilinear Shape Features” (or CSFs): descriptors of concave and convex shape features

that are built from local symmetry axes and have an associated region of support . This

feature representation is introduced in Chapter 7 and it is subsequently used as a basis for all

the remaining methods in Part II of the thesis.

10Commonly known as online data in the handwriting analysis literature.

1.4. Part II: Recovering graffiti primitives from geometry 41

1.4.2 Trace based methods

Chapters 8 and 9 are focused on geometric inputs of the first type, that is traces of various

kinds, which can be used to generate variations and stylisations of tags.

Chapter 8 uses CSFs to reconstruct traces in terms of strokes parameterised with the

Sigma Lognormal model. The method purposely ignores the kinematics embedded in the

input, allowing it to handle geometry where this information may be absent or degraded due

to poor digitisation quality. The resulting reconstruction thus infers physiologically plausible

kinematics from geometry and results in a concise and meaningful representation of a move-

ment that extends the rendering, animation and parametric variation methods described in

Chapter 4 to arbitrary traces.

Chapter 9 uses this reconstruction to drive an example-based stylisation method based

on a recurrent neural network. The method allows to stylise an input structure in way that

resembles an example trace, or to transfer qualities of movement between different traces.

This results in a novel form of “style-transfer” that is similar to existing curve-based methods

in computer graphics (Hertzmann et al., 2002; Li et al., 2013) but is based on the proposed

concept of “style as kinematics”. With the pretest of stylisation, this chapter also investigates

the utility of a high-level representation of movement when combined with recently popular

deep learning approaches. The results demonstrate that the additional structure provided by

the Sigma-Lognormal model can be exploited to train a data-hungry method with as few as

single training example.

1.4.3 Outline based methods

The trace-based methods in Chapters 8 and 9 allow the generation and rendering of tags

while enabling realistic variations and animations, which effectively addresses some of the

issues previously raised for graffiti content generation in games. However, for a procedural

graffiti generation system to be useful, it is certainly desirable for a user to specify a string of

text and then render it with different graffiti styles.

In order to achieve this, Chapter 10 presents a method that partitions the outlines of

a glyph into a set of potentially overlapping and intersecting strokes , augmented with se-

mantic annotations that determine connectivity relations or features such as corners. The

output of this procedure initially reconstructs the outline as precisely as possible. Then,

these strokes can easily be transformed into a motor plan that is compatible with all the other

methods developed in the thesis, thus enabling all the previously discussed stylisation and

rendering methods.

Chapter 11 demonstrates a number of examples of this stylisation procedure, and how

the outlines of a font can be used to generate instances of calligraphy and graffiti art in a

variety of different styles, structures and languages. The stylised outputs are expressed as

parametric stroke primitives, which can be edited, varied and rendered at arbitrary resolu-

42 Chapter 1. Introduction

tions, with exactly the same techniques that are presented in Part I of the thesis.

1.4.4 Overall contributions of Part II

The methods described in part II of the thesis, extend the functionalities described in part I to

arbitrary geometric data. This results in a graffiti content generation system that can be used

to (i) generate and render realistic tags with variations that resemble the ones that would

be seen in real instances of graffiti and (ii) to generate graffiti stylised strings in arbitrary

languages and writing systems, with a form and structure that is derived from the outlines of

a font.

These methods, are conceived to work principally with geometric data that represents

letterforms, such as handwriting traces or glyph outlines. However, a wider range of inputs

is possible and this potentially transfers the notion of graffiti stylisation beyond letters, in a

process that I refer to as Graffitization. With the aid of robotic and digital fabrication tech-

nologies, this concept is not only applicable to the virtual, but extends back to the material

world.

Similarly to Part I of this thesis, the context of graffiti results in a number of contribu-

tions that extend to a larger application domain, namely

1. A representation of concave and convex curvilinear shape features, with wider appli-

cations in shape analysis problems.

2. A novel method that reconstructs Sigma Lognormal parameters from the geometry of

a trace, which extends existing methods that all require high-quality input kinematics

(Plamondon et al., 2014; Ferrer et al., 2018) and with consequent applications to pat-

tern recognition for handwriting analysis.

3. An example-driven curve stylisation approach that is similar to existing methods

(Hertzmann et al., 2002; Li et al., 2013) but takes movement kinematics into account.

4. A segmentation method, that decomposes font outlines into constituent strokes with-

out requiring training data, which is generally useful for type-design (Wang, 2013) and

animation (Gingold et al., 2008) applications.

1.5 Publications
The chapters of this thesis discuss work and solutions that I have personally conceived and

implemented during my PhD studies. However, most of the work reported and published

involves various collaborations. Most chapters begin with a preamble that lists the associ-

ated publications and explicitly states my contributions and those of my collaborators where

needed. All these publications have been peer-reviewed and accepted, with the exception of

the material in Chapter 10 and a portion of Chapter 7 which are part of a journal submission

1.5. Publications 43

that is in preparation at the time of writing. The thesis extends and develops previously pub-

lished work further, with additional details and with subsequently developed refinements or

extensions. For the complete list of publications please refer to Appendix A. A lot of the ma-

terial in this thesis, has resulted in the development of software, which is best documented

through videos or interactive demonstrations. At the time of writing, a number of videos

are available at the following web address: https://www.enist.org/post/research/

autograff/. The videos are organised according to the chapter structure of this thesis, and the page

is intended to be updated with upcoming source code releases and new supplemental material. The

reader is invited to view the videos for a chapter if these are present.

https://www.enist.org/post/research/autograff/
https://www.enist.org/post/research/autograff/

Chapter 2

Notation and preliminary definitions

Vectors and matrices are denoted by bold symbols, with vectors always denoted by lower case symbols

(e.g. x ,φ) and matrices by upper case symbols (e.g. A,Φ). We adopt the Matlab-like indexing notation

x a:b or X a:b to indicate the consecutive rows of a vector or matrix from a to b including b. Vectors

are always assumed to be columns, however, like Murphy (2012), we use a notation of the type x =
[x1, · · · , xn] to denote vectors stacked along a column. In practice, this should be x = [

xT
1 , · · · , x>

n
]>

, but

we choose the former notation because it avoids clutter and the lower case symbol on the left clarifies

that the operation results in a vector. Conversely, X = [x1, · · · , xn] denotes a matrix, the columns of

which are given by the vectors x1, · · · , xn .

We will use the Gaussian (or normal) probability distribution at different stages of the document

and denote it with N . Using bold symbols N
(
µ,Σ

)
implies that the distribution is multivariate with

vector mean µ and matrix covariance Σ. Conversely, N
(
µ,σ

)
implies an univariate distrbution with

scalar mean and standard deviationµ,σ. Other symbols and notations will be described when required.

2.1 Geometry
This thesis is mainly concerned with the generation of 2D images is vector form. For consistency with

most 2D computer graphics packages, we will assume a left handed coordinate system with vertical

coordinates increasing downwards and angles increasing clockwise.

Curves: A curve is a “trip taken by a moving point” (O’Neill, 2006); mathematically, a mapping γ : I →
RD from an interval I = [a,b] to its trace as a set of D-dimensional points in RD . A planar curve maps

the interval to points in R2. A curve is simple if it does not intersect itself, and it is closed if γ(a) = γ(b),

such that its trace forms a loop.

Polyline: A polyline is a piecewise linear curve, consisting of a connected sequence of straight line

segments. It is specified as a sequence of vertices with coordinates p i .

Trajectory: A trajectory is a continuously differentiable curve parameterized by “time”, with coordi-

nates denoted by x(t). The time derivatives of a trajectory are denoted as ẋ , ẍ , for first and second

order, and
(n)
x for order n > 2. A discrete trajectory is a trajectory sampled at a discrete time step ∆t and

resulting in a polyline. The coordinates of the kth sample are denoted by xk , where xk = x(k∆t).

46 Chapter 2. Notation and preliminary definitions

Curvature: Mathematically, the curvature 1 of a continuous curve is a differential measure of its de-

viation from straightness, i.e. it expresses the local change in tangent direction. For a planar trajectory,

γ(t) = [x(t), y(t)]>, curvature can be computed with the classic formula:

κ(t) = ẋ ÿ − ẏ ẍ

(ẋ2 + ẏ2)3/2
. (2.1)

Absolute curvature is the reciprocal of the radius of curvature r (t) = 1/|κ(t)|, corresponding to an oscu-

lating circle (or circle of curvature) sharing a tangent with the trajectory at γ(t) and centered along the

normal to γ(t). For a curve sampled at a uniform distance step ∆s, curvature can be approximated by:

κs = φs

∆s
, (2.2)

with s the distance along the curve and φs the turning angle between two successive trace segments.

In the limit, as ∆s → 0, this approximation becomes the arc length or unit speed parameterisation of

the corresponding curve, where the curvature function κ(s) is known as the curve’s intrinsic or natural

equation. The function κ(s) can be used to recover the trace of a plane curve up to Euclidean motions,

that is up to translations and rotations (Abbena et al., 2017) with:

x(s) =
∫

cosφ(s)d s and y(s) =
∫

sinφ(s)d s, with φ(s) =
∫
κ(s)d s (2.3)

and where, for example, different kinds of spirals can be computed with κ(s) being a monotonic func-

tion of arc-length.2

Solid objects, figure, ground, and outline: A solid object Ω, or object for short, is a subset of R2

bounded by a rigid outline ∂Ω, a set of closed and simple curves called contours. Contours delimit

points ∈Ω (the object’s interior, or figure) from points in the complement R2 −Ω (the object’s exterior,

or ground). Contours are oriented so that travelling along a contour the figure is always on the right.

For example a doughnut shape has an outline consisting of two circular contours, an outer contour

oriented clockwise, and an inner contour oriented counterclockwise.

Discrete trace and contour: Discrete trace, or trace for short, is a sequence of 2D points obtained

from a sampling procedure. In this work, unless otherwise specified, we will use for simplicity a uni-

form sampling on the natural paramterisation of a curve , thus resulting in polylines with segments of

approximately constant length ∆s. When the trace points are sampled from a continuous curve, this

sampling approximates the curve’s arc-length parameterisation as ∆s → 0. In practice, the trace can

be open or closed, and its points are not necessarily sampled from a continuous input. The input may

consist of the samples produced from a digitization device such as a mouse or tablet, or edges obtained

through an image filtering procedure. The input can also consist of a contour of an object outline, in

which case we also refer to the resulting trace as a (discrete) contour, implying that it is guaranteed to

1Coolidge (1952) exposes an interesting history behind the mathematical definition of curvature. A modern def-
inition in terms of calculus is attributed to Newton in the 1700s. However a related concept of “curvitas” can be
traced back to the work of Nicolas Oresme in the 1300s.

2Refer to the text book by Abbena et al. (2017) for examples on how intrinsic equations can be exploited as a
flexible curve generation tool.

2.2. Motor plans and strokes: 47

be simple and closed. The coordinates of discrete contours and traces are both denoted as z i .

2.2 Motor plans and strokes:
The fundamental primitive used in this thesis is a stroke:

Stroke: A stroke is an elongated 2D region, for example obtained as the result of a drawing or painting

gesture between two positions on a drawing surface. Computationally, a stroke can be represented

in a tri-partite way as: (i) an axial curve or spine, (ii) a possibly non-symmetrical width profile that

determines the local thickness of a stroke, and (iii) a generator that fills an area or creates an outline or

fills an area as it traverses the axial curve. The generator can take different forms, such as a possibly

non-symmetrical brush footprint that embodies the trace of ink or paint left with a calligraphic gesture,

or an outline that is constructed along the spine.

Motor plan: Strokes are constructed with the analogy of a writing/drawing tool moving and leaving

marks on a surface. The layout and order of traveral of strokes is defined according to a motor plan, a

schematic reprsentation of one or more (drawing) movements. A motor plan, denoted as either P or Q,

consists of a sequence of vertices p1, p2, . . . , p M , with consecutive vertices connected by one or more

polylines.

Kinematic realisation: It is a sequence of trajectories that follow the polylines of a motor plan. It

is denoted with the script version of the motor plan symbols, P or Q, and it is computed from the

combination a motor plan with a set of kinematic parameters Θ. Such parameters determine the fine

evolution of the resulting trajectories. The transformation from a motor plan to trajectories is denoted

with the operator ¯, for example:

P = P ¯Θ .

Different kinematic parameters produce different trajectories and consequently different stylisations of

the motor plan. This instantiates the previously introduced concept of “style as kinematics”. Chapter 4

and Chapter 5 will demonstrate two different trajectory generation methods that result in two different

parameterisations of Θ, which take into account a number of principles and methods from the field of

computational motor control. These principles will be introduced next in Chapter 3.

Chapter 3

Background

3.1 A Brief History
The inspiration to reproduce hand-drawn or painted artistic styles computationally can be traced back

to the infancy of the computer age. The Algorists were a group of pioneering artists and computer sci-

entists formed in the 1960 ’s that employed computers and pen-plotters to generate the first digital

algorithmically-based works of art (Leavitt, 1976; Dietrich, 1986). Notably, Frieder Nake (1965) studied

the elements of Paul Klee’s painting Hauptweg und Nebenwege to create his algorithmic work Hommage

à Paul Klee (Nake, 2005). Michael Noll created computer programs that statistically simulated paint-

ings by Piet Mondrian 1 and Bridget Riley (Noll, 1966; Dietrich, 1986). Since the late 1960’s to the end

of his days (2016), Harold Cohen developed AARON, an Artificial Intelligence (AI) system capable of

automatically generating compositional works of art (Boden, 2003). The program was designed based

on Cohen’s extensive previous experience as a reputed painter, and has generated thousands of unique

artworks, many of which have been exhibited in important galleries across the globe. Inspired by his

hand drawing style and study of evolutionary processes, artist William Latham has developed since the

late 1980’s, together with computer scientist Stephen Todd, a system that evolves organic forms with

genetic algorithms (Todd and Latham, 1992).

In the early 1990’s, the computer graphics subfield known as Non Photorealistic Animation and

Rendering (NPAR) emerged with the main goal to produce algorithmic solutions approximating or

reproducing artistic techniques or rendering results, with an early focus on animating and rendering

painting and drawing styles. For an extensive review of the works in the field refer to (Kyprianidis et al.,

2013; Gooch et al., 2010).

With the new millenium, some work started to focus more precisely on understanding and repro-

ducing drawing and painting techniques including via the embodiment of algorithmic models using

robots. Deussen et al. (2012) extend painterly techniques from NPAR to the physical world with e-

David, a repurposed industrial welding robot that is capable of mixing its own colours and paints with

a brush and acrylic paint on a canvas. Tresset and Fol Leymarie (2013) have developed the AIKON II

1Noll (1966) also performed a user study with 100 participants that had to distinguish between computer and
human generated versions of the painting. The results showed that 28% of the viewers were able to correctly identify
the computer generated version, and 59% preferred the computer generated version.

50 Chapter 3. Background

system, which uses computer vision methods to model the human process involved in portrait sketch-

ing production and its embodiment in low cost robotic systems, designed around an articulated arm

and wrist as well as an orientable camera-eye. Both projects are on-going and have gone through suc-

cessive improvements to this day. In our work, we explored the embodiment of some of the methods

presented in this thesis using a humanoid robot with compliant control (Berio et al., 2016).

3.2 Beyond painting and drawing: Graffiti production
The scope of this thesis is to develop a deeper understanding of calligraphic production, with a focus

on the modern context of graffiti art. This leads us to propose a set of tools that allow the procedural or

interactive generation of synthetic graffiti art. We seek to reproduce, as much as possible, the process

typically used in conceiving and creating graffiti, and also to generate an output that is compatible with

robotic and fabrication devices such the ones used by Tresset and Fol Leymarie (2013) and Deussen

et al. (2012).

Similarly to painting or drawing, writing graffiti involves knowing how to move to produce an arte-

fact, as well as how perception impacts the actions involved in the needed gestures. As a result, the

remainder of this background chapter covers material ranging from computer graphics methods for

curve generation, stylisation and rendering, to principles and mathematical models of human move-

ment, to theories and methods of shape perception and representation. While it is not adequate to

thoroughly cover all these subjects in a single chapter of reasonable length, my goal was to include at

least the main sources that have informed the development of the methods in this thesis, and to justify

some of the choices made.

We start in Section 3.3 with an overview of curve generation and stylisation methods in computer

graphics, and then move in Section 3.4 to examine evidence in the arts, psychology and neuroscience,

suggesting the importance of bodily movement when producing or appreciating an artwork. We then

review in Section 3.5 some principles underlying human movement formation and a number of math-

ematical models that have been proposed, which prove useful when mimicking traces such as the ones

that can be observed in graffiti or calligraphy and form the basis for the methods developed in part

I of the thesis. This is followed by Section 3.6, which reviews different methods by which a stylised

letterform can be represented and rendered, and Section 3.7, which reviews a number of methods to

generate, stylise and segment letterforms. Finally Section 3.8 reviews a topics concerning the computa-

tional representation and visual perception of shape, which form the basis for the methods developed

in Part II of the thesis.

3.3 Curves in computer graphics
Many modern vector-drawing applications and interfaces provide tools that mimic the appearance of

hand drawn strokes and curves. In CAGD applications the two leading approaches to specify curves are:

(i) the interactive definition of a control polygon defining the shape of a piece-wise parametric curve or

(ii) a sketch-based interface (Olsen et al., 2009), in which curves are digitised with a device such as a

track-pad, mouse or tablet, and then transformed to a piecewise parametric curve. The most widely

used curve representations are piecewise splines, which are usually defined with either cubic Bézier

(Farin, 2002) or B-spline (de Boor, 1978) segments. The choice of a cubic is generally considered to

3.3. Curves in computer graphics 51

provide a desirable trade-off between ease of control and smoothness (Foley et al., 1995).

The degree of parametric continuity of a curve is denoted with C n , indicating that a curve param-

eterisation is continuous up to its nth derivative. For piecewise curves this means that the derivatives

up to the nth order are the same where two curve segments join. For example, a C 2 curve has associ-

ated continuous tangent vectors and curvature functions, as well as continuous parametric accelera-

tion (change of speed of traversal), and will thus produce a motion that is perceived as smooth. Many

CAGD applications are concerned with generating static images, and the requirement of parametric

continuity can be relaxed to one of geometric continuity (Barsky and DeRose, 1989), denoted as Gn .

For example, G2 continuity implies that connected curve segments share the same curvature at joining

endpoints, but may have different parameterisation.

3.3.1 Fairness, beautification and neatness of curves

One specific property of parametric curves that is generally considered desirable in CAGD applications

is fairness, which relates to continuity in curvature (Levien, 2009a) and implies that a curve is at least G2

continuous. Farin et al. (1987) propose that a fair curve should possess a curvature profile that is com-

posed of relatively few piecewise linear segments, a property that is analogous to the “french curve” tool

used in hand-made drafting. A number of so-called “fairing” methods (McCrae and Singh, 2009, 2011;

Levien, 2009a; Baran et al., 2010; Havemann et al., 2013) implement this analogy almost literally, by

concatenating curve segments made of Euler spirals — curves in which curvature varies linearly with

arc-length (Levien, 2009b). The method of Levien (2009a) is specifically aimed at designing outline-

based fonts, and results in spiral-based splines with desirable properties, such as the ability to generate

a perfect circle with four control points. This property, and five others pertaining to the generation

of “the most pleasing” interpolating curve for typography generation, are enumerated by Knuth (1979)

(see Table 3.1), who also shows that all six properties cannot be satisfied at the same time and suggests a

spline method developed by Hobby (1986) as an ideal choice. In the same period, font designer Charles

Bigelow, a close collaborator of Knuth, emphasises the importance of hand movements when consid-

ering letter design. Bigelow also notes, in an interview (Wang, 2013), that Bézier curves, and splines in

general “are usually pleasant, but they are more limited than the shapes that result from the living hand

moving a traditional tool through a complex path”.

Property Short Description

Invariance to scale, rotation and translation.

Symmetry invariance to cyclic permutation or reversal of order.

Extensionality such that adding a control point on the curve should not modify it.

Locality such that the geometry of a curve segment defined between two control points
only depends on those two points and directly adjacent ones.

Smoothness such that the curve should be sufficiently differentiable.

Roundedness such that given four equidistant control points on a circle, the curve will define the
same circle.

Table 3.1: The six properties of the “most pleasing curve” according to Knuth (1979).

52 Chapter 3. Background

Similar, and sometimes equivalent, to the concept of curve fairing, curve beautification or neat-

ening is the process of inferring geometric or structural constraints, primitives or graphic intentions

from user free-hand input (Igarashi et al., 2007). Zitnick (2013) beautifies handwriting and sketches by

averaging parts (tokens) of the input with previous specimens by the same user. The averaging process

smooths out imperfections while maintaining consistency with the user’s style. Thiel et al. (2011) in-

teractively neaten traces made with a pointing device by analysing the velocity of the movement. The

system smooths out the input at a degree proportional to its velocity, on the basis of the observation

that users commonly slow down their movements when they intend to create a more precise drawing.

One limitation of faring and beautification or neatness methods, is that the output usually consists

of many curve segments the location of which depends on the input geometry and can thus be diffi-

cult to edit. The same drawback generally holds also for Bézier curves with manually defined control

points, which must be placed at locations that depend on the desired curve geometry and smoothness

but do not necessarily reflect any perceptually salient feature along its trace (Yan et al., 2017; Levien and

Séquin, 2009). This can be especially challenging when attempting to mimic curves such as the ones

that can be seen in handwriting and calligraphy”‘ (Wang, 2013). Yan et al. (2017) address this problem

in the context of interactive Bézier curve editing, with an interface in which control points are con-

strained to coincide with absolute curvature maxima along the generated curve. The method stores an

underlying representation made of quadratic curve segments, which is then converted to cubic curves

in real time.

In this thesis we propose a different and hybrid approach that is especially aimed at reproducing

calligraphic traces. We automatically generate trajectories that are geometrically and kinematically

similar to the ones that could be made with a skilled movement and a sketch-based interface. How-

ever these trajectories can be defined and edited with an interface using control points similar to those

found in traditional curve generation methods.

3.3.2 Curve stylisation
A number of methods are aimed at generating stylised curves, often relying on a data-driven approach.

For example Lu et al. (2012) stylise digitised traces by adaptively concatenating segments from exam-

ples made by expert artists on tablets with a high number of degrees of freedom, such as based on pen

tilt and pressure. The input trace acts as a “guiding curve” for the inference of the missing pen-tilt and

pressure information which is matched from the available examples with dynamic programming, thus

allowing the creation of more realistic brush renderings. Li et al. (2013) assume that the “style” of a 2D

outline is represented by high frequency decorative features rather than structural or topological ones,

and build a system that can either de-emphasise or exaggerate stylistic features, or transfer and blend

these features between outlines. Hertzmann et al. (2002) propose a data-driven approach to stylise an

input curve based on a database of examples. The problem is expressed as follows:

Definition 3.3.1 (Hertzmann et al. (2002)). Given an input curve A, its stylised version A′ and a second

curve B , learn a mapping between A and A′ in order to generate a stylised version B ′ of B , such that the

analogy A : A′ :: B : B ′ holds.

The proposed implementation is functional but requires the tuning of a large number of parameters,

and does not run in real time. Lang and Alexa (2015) approach the same problem from a probabilistic

3.4. Movement perception and representation 53

standpoint and use a Double Hidden Markov Model to achieve a comparable result in real time and

with very few parameters to tune. Freeman et al. (2003) implement a similar style transfer system by

employing K-nearest neighbors (KNN) with locally weighted linear regression (Stulp and Sigaud, 2015).

The system stylises an input drawing given a large number of samples of stylized lines. In Chapter 9 we

adopt an approach similar to the one of Hertzmann et al. (2002) and Li et al. (2013), but consider the

kinematics of a movement as a descriptor of style.

A few examples exist that have exploited movement kinematics or dynamics to generate stylised

curves. The approach of Lu et al. (2012) can be categorised as one such example, since the result-

ing stylisation depends on the skilled movements of expert artists. Haeberli (1989) implemented Dy-

naDraw, a computer program that allows the user to interactive generate strokes evocative of calligra-

phy by simulating a mass-spring system attached to the mouse position. Levin et al. (2013) generate

abstract alphabets with a genetic algorithm combined with a physics simulation of a hand and pen.

House and Singh (2007) generate sketch based renderings, by using a Proportional Integral Derivative

(PID) controller to define the trajectory of a pen that follows the connected contours of a 3D mesh.

Thompson (2010) generates calligraphic effects on letterforms by optimising the evolution of a point

mass along a series of user defined spatial constraints. AlMeraj et al. (2009), use a well known model

of reaching movements that minimises jerk (i.e. changes in acceleration) (Flash and Hogan, 1985) to

mimic the visual qualities of hand drawn lines passing trough point triplets. Fujioka et al. (2006) adapt

a similar optimal control model to optimize the location of B-spline control points (Egerstedt and Mar-

tin, 2009), in order to generate Japanese calligraphy and to smoothly vary brush width.

3.4 Movement perception and representation
The hand-drawn curves that can be observed in art forms such as graffiti (Cooper and Chalfant, 1984)

and calligraphy (Mediavilla et al., 1996) are usually, if not always, the result of skillful and expressive

movements that require years to master. To put it in the (skillfully written) words of calligrapher Karen

Knorr (Briem et al., 1983): 2

The construction of the knot isn’t what counts. What you must learn is the movement.

Three hundred knots later...

This suggests the hypothesis that the perceived visual quality of a static calligraphic trace, depends (at

least in a significant way) on the properties of a motion that have generated it. If this is the case, having

parametric control of these properties when generating a synthetic motion should produce a perceived

visual quality similar to traces produced by skilled humans. In the following sections we will examine

some evidence in favour of this hypothesis, first in the art-history literature and then in the domains of

psychology and neuroscience.

3.4.1 Movement in the arts
It proves difficult to find an account of the motor act of drawing or painting in the Western art-historical

literature, which is often focused on the methods, techniques and compositional or formal aspects

2Quote from a special issue of the Visible Language journal, entirely written by hand by a number (51) of calligra-
phers, who answered with drawings and writing the question: “What parts of your work give you the most trouble?”.
It can be accessed online at http://visiblelanguagejournal.com/issue/65 .

http://visiblelanguagejournal.com/issue/65

54 Chapter 3. Background

of art works and styles (Fong, 2003; Seeley, 2013). The same can be said for a large part of works in

Computer Graphics within the NPAR sub-field (Kyprianidis et al., 2013), with the exception of a few

methods that we have previously mentioned in Section 3.3.2. However, in his well-regarded treaty “Art

and Illusion”, Gombrich (1977) notes that:

The word style of course, is derived from “stilus”, the writing instrument of the Romans,

who would speak of an “accomplished style” much as later generations spoke of a “fluent

pen”.

Rosand (2002) points out the importance of the artist’s movements in works such as the ones by

Leonardo, and considers drawing as an act of “self projection” of body actions onto the resulting traces.

To emphasise this Rosand also writes (Rosand, 2013)

The gesture of drawing is, in essence, a projection of the body, and, especially when view-

ing the drawing of the human figure, we are inevitably reminded of that.

And

Responding to drawings, we make our way, through line, to the originary impulse of the

draughtsman. Interpretation involves a connecting act of re-creation, the self-projection

of the viewer re-imagining the process of drawing.

Movement is fundamental at the conceptual level for modern artists such as Paul Klee and Cy

Twombly. In his notebooks, Klee (1961) famously defines a line in a drawing as “A point that has gone for

a walk”. Twombly’s work can resemble graffiti (Kaushik, 2013) and is made with spontaneous gestures

“made for their own experience” and evoking the same experience in the beholder (Rosand, 2013).

While references to generative movements are rather scarse in the Western art-historical literature,

the situation is different with East-Asian art history, where calligraphy is recognised for centuries as one

of the most important art forms. Art historian Wen C. Fong (2003) observes that:

Rather than color or light, the key to Chinese paintings lies in its calligraphic line, which

bears the presence or physical “trace” (ji) of its maker.

The author notes how terms commonly used to describe Chinese calligraphy and painting, such as

biji (“trace of the brush”), moji (“trace of ink”), yi (“made with spontaneity and naturalness”), qiyun

shengdong (“breath resonance” or “life motion”), are examples of how the static art works are a record

of the artist’s skilled movements and convey their physical presence. Similar principles hold for the

Japanese art of calligraphy (Ferri, 2016), which is called shodo, a term that literally means “the way of

writing” (Albertazzi et al., 2015)

3.4.2 Perception of movement in static forms
Common artistic knowledge and intuitions, as well as art theories such as the ones discussed above by

Rosand (2002) and Fong (2003), suggest that viewing a static work of art can evoke the gestures used by

an artist to create it. This hypothesis is further grounded in psychological and neuro-scientific evidence

suggesting that indeed the visual perception of marks made by a drawing hand triggers activity in the

motor areas of the brain (Freedberg and Gallese, 2007; Longcamp et al., 2003). This further induces an

approximate mental recovery of the (likely) movements and gestures underlying the artistic production

3.4. Movement perception and representation 55

(Freyd, 1983; Pignocchi, 2010), and such recovery influences its aesthetic appreciation (Leder et al.,

2012).

Freyd (1987) proposes that handwriting recognition is done by infering the motion used in its pro-

duction. The author posits that time is an intrinsic part of representation and static representations are

just special cases of dynamic representations. Pignocchi (2010) proposes that drawings are planned and

perceived at the level of Atomic Graphic Schemes (AGS), visuomotor primitives that associate the visual

aspects of a trace with a motor primitives and are automatically triggered when producing or perceiv-

ing a drawing. AGS are combined in the form of Molecular Graphic Schemes, that with experience and

practice are assimilated as a single AGS, thus influencing the perception, production and planning of a

drawing. The validity of this model would explain the way in which experience in drawing influences

the perception of drawing.

It has been discovered that macaque monkeys possess a set of “mirror neurons” in the pre-motor

cortex, which are activated both when producing as well as when observing a movement (Gallese et al.,

1996). Brain imaging data suggests a very high likelihood that a similar mechanism is present also in hu-

mans (for a review on the subject refer to Oztop et al. 2013). Freedberg and Gallese (2007) propose that

a similar mechanism may be activated in the brain during the perception of art works. Figurative art

works that depict actions or movement produce a sense of bodily “empathy” in the viewer. The traces

left by an artist on a canvas induce in the viewer a form of mental simulation that recovers the artist’s

gestures and intentions (Freedberg and Gallese, 2007). In an EEG study Umilta et al. (2012) detected

clear activity in the cortical motor system of subjects when viewing the cuts on a canvas performed

by artist Lucio Fontana, even when the observers were not familiar with the artist’s work. Leder et al.

(2012) observe a positive correlation between the aesthetic appreciation of a painting with the execu-

tion of movements that are similar to the ones used to produce the painting.

James and Gauthier (2006) and later Longcamp et al. (2009) have performed fMRI experiments to

find the interaction between visual and motor perception during letter writing and visualisation. The

authors show that writing letters activates areas of the brain associated with visual perception, and vi-

sualising letters activates areas of the brain associated with motor control. The authors propose that

these areas of the brain form a “letter network” (Longcamp et al., 2009) that is activated both during

perception and production of letterforms. In a series of MEG, fMRI and EEG studies (Longcamp et al.,

2006, 2011; Wamain et al., 2012), it is shown that handwritten letters produce a higher motor cortex

activation than printed letters. The execution of a motor task during the observation suppresses these

activations (Wamain et al., 2009). Handwritten letters also trigger the activation of an area of the brain

(SMA) which is commonly attributed to the planning of complex sequential movements and is also

employed to inhibit movements produced by the motor cortex (Longcamp et al., 2011). While the acti-

vation of areas of the brain involved in motor control is higher for handwritten letters, activity is present

also for printed letters (Longcamp et al., 2011). This suggests that letters in general trigger some form

of mental simulation of motor action.

In summary, these results and observations suggest the important role of movement, even when

observing the static traces of a drawing or painting, and in particular those that can be seen in written

art forms such as calligraphy. To find additional evidence for this hypothesis and to take it into account

when generating synthetic traces, it is thus useful to study more in depth some principles underlying

56 Chapter 3. Background

human movement formation and some relevant computational models.

3.5 Motor control
The scientific study of human and biological movement is a highly interdisciplinary field of research,

which has evolved at the intersection of psychology, neuroscience, mathematics, physiology, robotics

and human computer interaction. In our study we focus on upper limbs in humans and their simu-

lation in robotics, i.e. the movements of the arm-wrist-hand system, which we refer to as the “human

arm” for simplicity. These movements can be described in 3 types of coordinate systems (Mussa-Ivaldi

et al., 2004):

• Endpoint coordinates: positions (and orientation) of the hand or end effector.

• Actuator coordinates: human muscle activations or robot arm motor torques.

• Generalised coordinates: joint angles between each limb segment.

Inverse kinematics is the process of finding the transformation between endpoint coordinates and

generalised coordinates. Inverse Dynamics is the process of transforming generalised coordinates into

actuator coordinates, i.e. computing the muscle activations, or actuator torques for moving the limb

given a set of joint angles. During the execution of a simple line with a brush, or a reaching motion of

the hand, the central nervous system (CNS) is faced with inverse kinematics and dynamics problems

that are ill-posed (Schomaker, 1991; Mussa-Ivaldi et al., 2004), i.e. there may be either no single solution

or an infinite number of these.

In the context of generalised coordinates, the human arm is typically modelled with seven Degrees

of Freedom (DOFs) which already implies an infinite number of possible arm configurations for a given

end position of the hand. Furthermore, each joint of the arm is controlled by a number of muscles,

which in turn are composed by hundreds of smaller components known as motor-units. This raises the

effective number of DOFs of the human arm to the order of thousands (Turvey et al., 1982). The prob-

lem of motor coordination given the “abundance of degrees of freedom” — or redundancy problem

– was noted by Nicolai Bernstein in his pioneering studies on human motion (Bernstein, 1967). Bern-

stein, proposed the concept of synergies as a mean for organisms to overcome the redundancy problem.

Synergies are interactions between muscles and joints that (in principle) constrain the possibilities of

motion and simplify the motor control problem. It has been shown that the physical properties of the

body can greatly simplify the motor control problem, an example can be seen with swinging of legs

during gait (Rosenbaum, 2009), simulated in robotics with “passive dynamic walkers” which are able to

walk down slopes thanks to their mechanical constraints (Collins et al., 2005).

3.5.1 Principles and invariants
Through several years of experimental research on human movement, a series of “invariants” have

emerged that seem to relate the dynamic (time, speed) and figural (curvature, shape) aspects of hu-

man hand motions (refer to table 3.2 for a summary). While such principles are not set in stone, they

constitute a general basis for the advancement of new theories, and a benchmark for the validation of

mathematical models that have been created. For an extensive review on the subject refer to the book

by Rosenbaum (2009). Below we give some details on the invariants and other principles most relevant

to our thesis.

3.5. Motor control 57

Principle Short Description References

Speed accuracy tradeoff Movement time is inversely
proportional to required accu-
racy.

(Woodworth, 1899; Fitts, 1954;
MacKenzie and Buxton, 1992;
Plamondon and Alimi, 1997)

Isochrony Movement time is approxi-
mately independent of move-
ment extent.

(Freeman, 1914; Viviani and
McCollum, 1983; Thomassen
and Teulings, 1985; Jordan and
Wolpert, 1999)

Isogony Tangential velocity is propor-
tional to radius of curvature

(Viviani and Terzuolo, 1982;
Thomassen and Teulings,
1985)

Power laws (2/3, 1/3) Velocity and curvature radius
are related by a power law

(Lacquaniti et al., 1983; Viviani
and Schneider, 1991; Plamon-
don and Guerfali, 1998a; Flash
and Handzel, 2007)

Open loop movements Movements can be executed
in an open loop manner, and
do not necessarily require con-
tinuous visual/proprioceptive
feedback.

(Taub and Berman, 1968; Polit
and Bizzi, 1978; van Doorn and
Keuss, 1993; Schomaker, 1991;
Jordan and Wolpert, 1999)

Equi-affine geometry Movement segments have
constant velocity in equi-
affine space.

(Flash and Handzel, 2007;
Polyakov et al., 2009)

Motor primitves Complex movements are
planned and executed at the
level of a discrete number of
simpler units of action

(Lacquaniti et al., 1983; Teul-
ings and Schomaker, 1993;
Morasso, 1986; Polyakov
et al., 2009; Morasso and
Mussa Ivaldi, 1982; Rosen-
baum et al., 1995; Mussa-Ivaldi
and Bizzi, 2000; Flash and
Hochner, 2005)

Bell-shape The speed profile of rapid and
straight reaching motions can
be described by a “bell shaped”
function.

(Morasso, 1981; Nagasaki,
1989; Abend et al., 1982; Plam-
ondon, 1995)

Table 3.2: Summary of principles that have been observed in human upper limb movements.

3.5.1.1 Motor equivalence

Humans are able to perform the same type of movement regardless of the sets of muscles and limb

used. For example, upon request, a person will usually be able to trace a figure eight with a finger, the

hand, an elbow, a foot or even with the tip of the nose. This is known as the principle of motor equiva-

lence. On the basis of this principle, Bernstein (1967) hypothesises that the CNS represents movement

in endpoint coordinates. Morasso (1981) supports this hypothesis experimentally, and shows that in

58 Chapter 3. Background

reaching arm motions at random targets the joint angular velocity profiles vary greatly within trials,

while the tangential velocity profiles are always characterised by a bell-shape with a single peak.

3.5.1.2 Isochrony.

Since early in the 20th century (Freeman, 1914), various experiments have demonstrated the tendency

of humans to keep the time of movements relatively independent across different size ranges. In other

words, velocity increases proportionally to movement extent (Denier and Thuring, 1965; Ghez et al.,

1997). This principle is commonly referred to as isochrony (Viviani and McCollum, 1983), where global

isochrony refers to movements and trajectories as a whole, and local isochrony refers to parts of a move-

ment (Jordan and Wolpert, 1999). In a study of handwriting in adults and children, Freeman (1914) ob-

served that, especially in adults, parts of a letter with a different extent were executed in approximately

equal times. Thomassen and Teulings (1985) hypothesise that isochrony is caused by the narrow fre-

quency band of the output of the motor system and observe in a study of handwriting that past a letter

size threshold of 16 cm, the isochrony principle breaks down, and movement time increases as a power

(1/2) function of size.

3.5.1.3 Isogony and Power laws

Already by the end of the 19th century, Jack (1894) noticed that “the curved parts of letters and fig-

ures are more slowly formed than the rectilinear parts, and that the velocity of a curve varies, roughly

speaking, with the radius of curvature”. This phenomenon was also observed by Freeman (1914) in his

study of handwriting movements, where he observed that sharper turns on a curve corresponded with

a decrease in speed. Viviani and Terzuolo (1982) formalise this invariant with the principle of isogony,

stating that a trajectory goes through “equal angles in equal times” with a tangential velocity that is

proportional to the radius of curvature, weighted by a constant K that varies in a piecewise manner

across the movement. This piecewise variation of K gives an indication that motion can be segmented

in sub-movements, or units of action that define the velocity profile of the motion. Lacquaniti et al.

(1983) observe that for certain families of movements, angular velocity and curvature are related by a

two-thirds power law,3 which in terms of tangential velocity gives:

‖ẋ‖ = K r 1/3 , (3.1)

where r = r (t) = 1/κ is the radius of curvature.

The power law has been shown to be valid only for certain classes of movement. For example,

Plamondon and Guerfali (1998a) show through an analysis by synthesis experiment that for complex

handwriting movements the power law holds only for segments of the trajectory that are hyperbolic or

elliptical. Nevertheless, the general principle seem to hold that (i) steeper turns are executed at a lower

speed and that (ii) curvature and velocity are related by a power law. This gives a useful hint for the

intrinsic relationships between dynamics and geometry in hand drawn movements. More recently, a

series of studies (Flash and Handzel, 2007; Polyakov et al., 2009; Maoz et al., 2009) has proposed that

the perception and the production of movement has an underlying structure that is non-Euclidean.

Flash and Handzel (2007) observe that movement invariants such as the power law or isochrony can be

3For the angular velocity ω and curvature κ the power law is: ω = Kκ2/3, which in terms of tangential velocity
becomes: ‖ẋ‖ = Kκ−1/3.

3.5. Motor control 59

interpreted geometrically by analysing movement through the lens of affine and equi-affine geometries.

Indeed, given the Euclidean radius of curvature r (t) and arc length s, the equi-affine arc length σ1 is

defined by:
dσ1

d s
= r (t)

1
3 , (3.2)

which corresponds to the above power law.

3.5.1.4 Feedback

In a seminal study of human movement, Woodworth (1899) studied the variability of rapid aiming tasks

by analysing pen movements constrained to a slit of varying width. The study resulted in the following

observations:

• Aiming motions can be subdivided in two phases: an initial ballistic phase, and a subsequent

corrective phase.

• Higher movement speed resulted in a higher variability of the motions and error in reaching the

targets.

• With no visual feedback, the movements showed a higher variability, which was approximately

constant regardless of speed; however, past a certain movement speed, the vision and no-vision

conditions converged to a similar error and variability.

This last observation led Woodworth to hypothesise that visual feedback has a limited rate (250 Hz),

which limits its applicability to very rapid movements and suggests that movements can be made in a

completely open-loop manner. This has been confirmed more recently, with the rate of visual feedback

being between 100 and 200 Hz (Rosenbaum, 2009, p.228). In a study about well learned movements,

van Doorn and Keuss (1993) showed that the variability of handwriting parameters with or without

vision becomes less significant.

3.5.1.5 Variability

Following Woodworth’s line of work, Fitts (1954) employs an information-theoretical approach to study

rapid aiming and reaching movements. The results demonstrate a “speed-accuracy tradeoff”, i.e. the

tendency of movement time to increase with distance and to decrease with a reduction of required ac-

curacy. Fitts explained these results with a fixed information-transmission capacity of the motor system

and quantified the relation between time, precision and distance with an equation commonly referred

to as “Fitts’ Law” (Fitts and Posner, 1967). Numerous other extensions of Fitts’ law have been devel-

oped through the years in order to improve its predictive accuracy; for a review the reader is referred to

Plamondon and Alimi (1997).

Harris and Wolpert (1998) suggest that neural signals are noisy, and that noise is proportional to

the amplitude of the neural signal. This observation results in a minimum-variance model of point-

to-point movements, where movement velocity and time result from the minimisation of a trade-off

between end-point accuracy and movement speed. Todorov and Jordan (2002b) suggest that the re-

dundancy of the musculoskeletal system acts as a “noise buffer” or “uncontrolled manifold” (Scholz

and Schöner, 1999), which is taken advantage of in order to “project” the errors caused by sensory de-

lay and neuro-motor noise onto dimensions that minimise the effect on the motor task. This results in

60 Chapter 3. Background

a minimal intervention principle of trajectory formation (Todorov and Jordan, 2002a), where deviations

from an average and maximally smooth trajectory are corrected only if the required precision is high.

0.0 0.2 0.4 0.6 0.8 1.0
t

0

1

2

sp
ee

d

(a)
Minimum jerk
Beta
Lognormal

0.0 0.5 1.0 1.5 2.0
t

0

500

1000

sp
ee

d

(b)

Figure 3.1: Bell shaped speed profiles. (a) Examples of functions used to describe the characteristic bell
shape: minimum jerk, a Beta function and a lognormal. (b) Superposition of lognormals
and the resulting speed profile.

3.5.1.6 Kinematics

The tangential velocity profile of point-to-point aiming movements typically assumes a “bell shape”

(Morasso, 1981; Flash and Hochner, 2005; Plamondon et al., 2014), variably asymmetric depending

on the rapidity of the movement (Nagasaki, 1989; Plamondon et al., 2013). The bell shape has been

modeled with a variety of techniques (Figure 3.1(a)), which include sinusoidal functions (Morasso and

Mussa Ivaldi, 1982; Maarse, 1987; Rosenbaum et al., 1995), Beta functions (Lee and Cho, 1998; Bezine

et al., 2004), optimisation methods (Flash and Hogan, 1985; Hoff, 1994), and lognormals (Plamondon,

1995). Plamondon et al. (1993) and later Rohrer and Hogan (2003) have shown that between differ-

ent fitting curves the best velocity profile of point movements is given by a support-bound lognormal,

which is variably asymmetric (Figure 3.1(b)).

Hand movements are typically smooth and result in trajectories that can be explained with the

minimisation of the square magnitude of high derivatives of position with distinctive names such as

“jerk” for 3rd order (Flash and Hogan, 1985), “snap” for 4th order (Flash, 1983) and “crackle” for 5th

order (Dingwell et al., 2004). The velocity of smooth hand movements can be reconstructed with the

superposition of a discrete number of target-directed “ballistic” sub-movements that are also char-

acterised by the stereotypical bell-shaped velocity profile (Rohrer and Hogan, 2006; Flash and Henis,

1991; Leiva et al., 2017).4 Different sub-movement durations or activation-times produce different but

yet smooth kinematics (Flash and Henis, 1991).

The velocity peak of each sub-movement produces a peak in the superimposed speed profile and

a consequent minimum between consecutive peaks (Figure 3.1(b)). Consistent with the isogony prin-

ciple, this also results in an (absolute) maximum of curvature. Consequently, curvature maxima are

4These sub-movements are often referred to as “strokes” (Teulings and Schomaker, 1993; Morasso, 1986; Sosnik
et al., 2004). However, in the wider context relevant to this thesis, the term “stroke” is also commonly used to refer to
the mark resulting from a complex movement made with a writing tool in contact with a surface. We will adopt the
latter interpretation of the term, and refer to movement-units as “movement primitives” or “sub-movements”.

3.5. Motor control 61

generally considered good indicators for the segmentation of a movement into basic units (Brault and

Plamondon, 1993a; Meirovitch and Flash, 2013; De Stefano et al., 2005). With experience, a movement

tends to become smoother (Sosnik et al., 2004; Rohrer and Hogan, 2003; Plamondon et al., 2013) and

the number of velocity peaks decreases. This phenomenon is known as co-articulation and can be in-

terpreted as the chunking (or fusion) of movement primitives at the planning level (Sosnik et al., 2004).

3.5.1.7 Motor primitives and representation

The form in which the human brain represents movement is still an open question. For example there

is a long standing debate between a cognitive or “computational view” of motor planning and repre-

sentation and “dynamical-system view” (Rosenbaum et al., 2007). The computational view defends the

existence of some form of abstract representation of movement often referred to as a motor program,

engram or schema (Keele and Summers, 1976; Schmidt, 1975; Rosenbaum et al., 2007). An early pro-

ponent of this view is Lashley (1951), who describes complex and skilled motions as the combination

of “units of action” that are centrally combined to form an hierarchically organised and context depen-

dent plan. The decomposition of a movement into ballistic sub-movements is a modern example of

such an approach. The dynamical-system view suggests that perception and action emerge from the

continuous interaction of mental processes, muscle/limb dynamics and the surrounding environment

(Kelso and Saltzman, 1982; Turvey et al., 1982; Newell and Vaillancourt, 2001). Organised movements

are achieved through “coordinative structures”: groups of muscles that are employed cooperatively in

the resolution of a task (Newell and Vaillancourt, 2001), or as previously proposed by Bernstein 1967:

synergies. In line with this view, Schaal et al. (2007) propose Dynamic Movement Primitives (DMPs),

which are popular in robotics and reproduce both discrete and oscillatory motions by variably modu-

lating a mass-spring-damper system with a forcing term.

While the computational and dynamical-system views are often put in contrast, they are not nec-

essary mutually exclusive, but rather can be seen as complementary descriptions of the complex pro-

cess of movement planning and formation (Woch and Plamondon, 2003; Krampe et al., 2002). The

general consensus is that there exists some form of mental and neural representations of movement

that guides the motions of the human body (Flash and Hochner, 2005). The ability of humans and an-

imals to perform movements without sensory feedback (Schomaker, 1991; Bizzi and Polit, 1979), the

observation of invariants in hand motions (Lacquaniti et al., 1983; Viviani and McCollum, 1983; Viviani

and Terzuolo, 1982), the ability of humans to mentally visualise a motion (Jeannerod, 1995), increasing

reaction times with increasing movement complexity (Henry and Rogers, 1960), are indicative of the

existence of a central representation of movement in some form.

Flash and Hochner (2005) propose that complex motions (in humans, but also in animals includ-

ing invertebrates) can be broken down into elementary building blocks, i.e. motor primitives, that are

combined and superimposed to produce complex motion. The way in which a movement can be rep-

resented depends on the underlying model. For example motor primitives consisting of ballistic sub-

movements, intrinsically define a motor plan consisting of a sequence of consecutive aiming targets.

These are also known as “virtual targets” (Djioua and Plamondon, 2009), because they can be seen as

imaginary locations at which a sub-movement is aimed. Other models that operate in endpoint coor-

dinates describe a movement with a series of “via-points” (e.g. Edelman and Flash 1987 or Wada and

Kawato 1995) that, unlike virtual targets, are located along a trajectory. Models that operate in gener-

62 Chapter 3. Background

alised coordinates can represent a movement as sequences of poses, while ones that operate in actuator

coordinates describe movement with equilibrium trajectories (Bizzi et al., 1992; Feldman, 1966) or force

fields (Mussa-Ivaldi and Bizzi, 2000) that determine muscle coactivations. Table 3.3 gives a summary

view of the main representations found in the literature.

Representation Short Description Coordinates References

Via-points Landmark points along the
movement trajectory.

endpoint,generalised (Flash and Hogan, 1985; Viviani
and Flash, 1995; Flash, 1983;
Todorov and Jordan, 1998; Hoff,
1994; Uno et al., 1989; Harris
and Wolpert, 1998; Edelman and
Flash, 1987; Bullock et al., 1993;
Grossberg and Paine, 2000; Meu-
lenbroek et al., 1996)

Virtual targets Imaginary loci at which ballistic
sub-movements are aimed.

endpoint (Morasso and Mussa Ivaldi, 1982;
Maarse, 1987; Plamondon and
Guerfali, 1998b; Plamondon
et al., 2009; Bezine et al., 2004)

Poses Configurations of the arm at
discrete times during a
movement.

generalised (Rosenbaum et al., 1995; Meu-
lenbroek et al., 1996)

Attractors Attractors for a dynamical
system.

endpoint, generalised (Del Vecchio et al., 2003; Schaal,
2006)

Force fields Superposition of force fields that
describe muscle activation.

actuator (Bizzi et al., 1991; Mussa-Ivaldi,
1997; Mussa-Ivaldi and Bizzi,
2000)

Oscillatory Oscillation amplitude and phase
modulation.

endpoint (van der Gon et al., 1962; Vreden-
bregt and Koster, 1971; Dooijes,
1983; Hollerbach, 1981)

Table 3.3: Summary of movement representations.

In the context of this thesis, we are interested in reproducing trajectories with properties that

are consistent with those observed in human hand and arm movements. At the same time, we seek

a representation that allows for a simple user interface, similar to the control polygon typically used for

parametric curve design in CAGD. While the way in which movements are planned remains an open

question, motor equivalence (Bernstein, 1967; Morasso, 1981) and recent experiments (Torres et al.,

2013; Wong et al., 2016) indicate that human hand movements are likely planned at the level of end-

point coordinates. Intuitively, specifying movements at the joint level or muscle level would be quite

impractical for our application. However taking posture, or even some model of muscles into account

is definitely an interesting area of future research. As a result, we will principally focus on computa-

tional models and representations that operate at the level of endpoint coordinates and on movement

representations consisting of either virtual targets or via-points.

3.5.2 Trajectory formation
We consider in this section two main strategies based on: (i) optimal control, and (ii) ballistic sub-

movements.

3.5.2.1 Optimal control

A series of models propose that trajectory formation can be explained through an optimisation that

minimises some form of objective function or “cost” (Engelbrecht, 2001). Based on the observation

3.5. Motor control 63

that hand motions are intrinsically smooth, Flash and Hogan (1985) propose the minimum-jerk model

(Hogan, 1982), in which hand movements are planned in order to minimise the squared magnitude of

jerk (the 3rd order derivative of position). Flash and Hogan (1985) derive the optimal solution in terms

of a quintic polynomial, describing the evolution of straight “point-to-point” movements, or a curved

movement that interpolates a so-called “via-point”.5 The minimum jerk model also predicts the time

occurrence of one or more via-points. For trajectories with one single via-point the time occurrence

is the solution to a 9th degree polynomial of the total movement duration. Todorov and Jordan (1998)

develop a constrained minimum-jerk model computing the kinematics of a minimum jerk motion given

a predefined path. The model predicts the time occurrence of multiple via-points that minimise jerk

with a non-linear optimisation procedure. Viviani and Flash (1995) show how complex trajectories can

be achieved by specifying velocity and acceleration constraints in correspondence with multiple via-

points with experimentally determined passage times, producing trajectories that are consistent with

the two-thirds power law (Eqn. 3.1).

Flash (1983) also derives the minimum-snap model, which minimises the square magnitude of

snap (4th derivative of position), resulting in a solution to a polynomial of degree 7. Flash shows ex-

perimentally that the minimum snap model gives an overall better approximation for the tangential

velocity profiles of point-to-point movements, while the minimum jerk model gives better results for

curved movements. Other minimisation based methods include the minimum time model (Hoff, 1994),

which adds a time penalty to the minimum jerk cost function, the minimum torque model (Uno et al.,

1989), which also takes the dynamics of the musculoskeletal system into account, and the minimum

variance model (Harris and Wolpert, 1998), which minimises end point variance. The latter model also

predicts asymmetric velocity profiles, as opposed to the other methods that predict perfectly symmet-

ric velocity profiles (Tanaka et al., 2004). Egerstedt and Martin (2009) show the equivalence between

several forms of splines and control theoretic formulations of linear dynamical systems. The authors

show that polynomial splines of degree 2n −1 correspond to the output of a controller that minimises

the squared magnitude of the nth order derivative of position.

Consistent with the minimal intervention principle, Todorov (2004) and Wolpert et al. (2011) pro-

pose optimal feedback control as a model of trajectory formation, in which the biological controller uses

predictive control and internal dynamic models to infer the outcomes of a movement and to overcome

the inherent noisiness and delays of the sensimotor system. The objective is not to minimise a cost

function such as based on jerk, snap, torque or variance, but rather it is the optimisation of a controller

performance depending on the task constraints. A practical implementation of these methods based

on machine learning and model predictive control has been proposed by Calinon (2016a) in the context

of programming by demonstration in robotics. We will demonstrate an extension of this method for the

interactive generation of calligraphic trajectories in Chapter 5 of this thesis.

3.5.2.2 Ballistic sub-movements

The previous group of control optimisation methods result in trajectories that possess regularities that

are experimentally consistent with the ones observed in human movements. Another important set

of methods used to describe a movement is through the combination of one or more ballistic sub-

5A via-point is an intermediary passage point that is interpolated by a minimum jerk trajectory. It plays a role
equivalent to the position of a spline knot.

64 Chapter 3. Background

movements, characterized by a bell-shaped velocity profile.

An early example of such a model, is developed by Morasso and Mussa Ivaldi (1982), who describe

complex handwriting movements with the superposition of ballistic sub-movements characterised by

a sinusoidal velocity profile and a trajectory trace given by a B-spline. Another early example is by

Flash and Henis (1991) who generate complex motions by superimposing multiple target directed sub-

movements described with the minimum jerk model.

One particularly important class of ballistic models of trajectory formation is developed by Pla-

mondon et al. in what is known as the “kinematic theory of rapid human movements” (or kinematic

theory for short) (Plamondon, 1995). This theory assumes that movement results from the parallel

and hierarchical interaction of a large number of neuromuscular units that are modeled as linear sub-

systems. With this premise, Plamondon et al. (2003) use the Central Limit Theorem to prove that the

impulse response of the system as a whole to a centrally generated command asymptotically converges

to a lognormal, resulting in a varying asymmetric velocity profile. The kinematic theory includes a

number of models that describe movements of varying complexity. The Delta Lognormal model (Plam-

ondon, 1995), describes the velocity of rapid point-to-point movements with the synergy of an agonist

component and an antagonist component acting in opposite directions. The Vectorial Delta lognormal

model (Plamondon and Guerfali, 1998b) and the Sigma Lognormal model (Plamondon et al., 2009) de-

scribe complex hand trajectories via the vectorial superposition in time of movement primitives each

with a lognormal speed profile.

Plamondon et al. (2013) show that with increasing experience, the rapid movements made by an

adult when writing converge towards “lognormality”. In other words, with practice towards expertise,

the velocity of the trajectories can be more and more precisely described by a sum of lognormal curves.

In Chapter 4 we will extend the Sigma Lognormal model, showing how it can also be used as a powerful

and interactive curve and trajectory generation tool.

3.5.3 Graphonomics: Models of drawing and handwriting movement

The first “computational” (and embodied) model of handwriting can perhaps be attributed to Jacquet

Droz (1721-1790), the inventor of the wristwatch (Rosheim, 1994). Droz created a series of humanoid

automata, the most complex being the “writer” (made of 6,000 mechanical pieces) that can write script

powered by a clock-work like engine. The machine is programmable, in the sense that the combinations

of letters can be set by switching modular letter elements — serving as physical records of the needed

movements — in the mechanism.6

Most of the more recent research on handwriting synthesis and analysis has been conducted un-

der the field known as graphonomics,7 the scientific field “concerned with the systematic relationships

involved in the generation and analysis of the handwriting and drawing movements, and the resulting

traces of writing and drawing instruments” (Kao et al., 1986).

6Three of the original automata — the musician, the draughtsman and the writer — are still functioning and
maintained at the Museum of Art and History of Neuchatel, Switzerland.

7Not to be confused with the less scientifically rigorous field of graphology, which studies the correlation between
properties of handwriting and personality traits.

3.5. Motor control 65

3.5.3.1 Principles

Handwriting movements are characterised by the previously summarised principles and invariants

(§ 3.5.1) together with a number of additional properties that have emerged with studies in the field

of graphonomics. For example, both Dooijes (1983) and Maarse (1987) observe that handwriting is well

described in the plane with an oblique coordinate system, where the origin can shift from left to right

due to the forearm motion, and the oblique axes span the space covered by the combined movement

of the two forefingers and the thumb and slight rotational movements of the wrist. The angle between

the two axes is shown to vary between 30◦ for drawing motions and 90◦ for handwriting. We will use a

similar principle to vary trajectory stylisations in Chapter 5.

Consistent with the hypothesis of chunking at the motor level, Teulings et al. (1986) note that

with well-practiced handwriting gestures, planning occurs at the level of more complex combinations

of movement primitives. Edelman and Flash (1987) identify four basic types of curved primitives that

can be combined to generate cursive handwriting. The authors show that the minimum-jerk model

with a single via-point is not sufficient to capture all types of strokes, unless a velocity constraint is

specified at the via-point. On the other hand, a minimum-snap trajectory (Flash, 1983) with one via-

point is capable of describing these shapes, and the constraints can also be defined geometrically by

specifying the desired slope of the trajectory at a via-point. As a result, the dynamics of motion are

defined exclusively with geometric constraints, in a process the authors refer to as “Kinematics from

Shape”.

Maarse (1987) performs a comparative study in which 14 different models of handwriting are con-

sidered. Handwriting is described as the combination of different movement primitives, which seg-

ment the handwriting trajectory in the spatial, velocity or acceleration domain. Such segments are

delimited by “transition points” which are respectively located at minima and maxima of curvature,

velocity minima, and zero crossings of acceleration. Bell-shaped velocity profiles are created with sinu-

soidal functions. The geometry of curved segments is described either by a circular arc, or by offsetting

the motion in a direction perpendicular to the segment’s principal direction. It is shown that the mod-

els describe writing units in the velocity domain, and that an asymmetric velocity profile gives the best

reconstruction results.

3.5.3.2 Oscillatory models

Early models of handwriting employed analogue computing techniques to simulate handwritten traces.

Van der Gon et al. (1962) developed an electronic device which simulated handwriting traces on an os-

cilloscope by regulating the timing of two second order components driven by rectangular acceleration

pulses. Vredenbregt and Koster (1971) used a similar technique to build a writing machine driven by

two DC motors. MacDonald (1966) fitted trapezoidal acceleration profiles to a recorded handwriting

signal in order to replicate the handwritten traces on an oscilloscope screen. Dooijes (1983) gener-

ated handwriting with a model similar to the one developed by van der Gon et al. (1962), using two

second order dynamical systems, excited by rectangular pulses. Hollerbach (1981) hypothesised that

during handwriting movements muscles act as oscillating springs in the horizontal and vertical direc-

tion. This results in a model consisting of a pair of coupled horizontal and vertical oscillators that

determine the velocity of a handwriting movement. While the model is capable of generating several

simple instances of cursive script, with increasing complexity the number of parameters that have to

66 Chapter 3. Background

be adjusted becomes prohibitively large. Schomaker (1992) simulated simple handwriting movements

with a biologically inspired neural network model of pulse oscillators. The neural network is trained

on the recorded velocity of single letters of the alphabet, but while some of the results are satisfactory,

at times the network does not converge. More recently, Nair and Hinton (2005) used a series of neural

networks to learn the motion of two orthogonal mass spring systems from images of handwritten digits.

The system is able to classify digits by extracting the corresponding “motor program” from a bitmap.

3.5.3.3 Ballistic models

On the basis of Plamondon’s Kinematic Theory (Plamondon, 1995), the Sigma Lognormal (Plamondon

et al., 2009) describes complex handwriting trajectories via the vectorial superposition of lognormal

stroke primitives. With the assumption that curved handwriting movements are done by rotating the

wrist, the direction and shape of strokes is described with a circular arc. The evolution of a stroke’s

curvature is given by using the time integral of the lognormal function (Eqn. 4.1) to interpolate between

an initial and a final orientation. Complex trajectories can be described with the linear combination

in time of a number of circular arc strokes. The Sigma Lognormal model has been extensively used

in handwriting synthesis applications, including: handwritten signature synthesis (Plamondon et al.,

2014; Ferrer et al., 2015), generating synthetic variations of a given handwriting specimens (Djioua and

Plamondon, 2008a; Fischer et al., 2014) and CAPTCHA generation (Ramaiah et al., 2014). Plamondon

and Privitera (1996) use a Self Organising Map (SOM) to learn a sparse sequence of ballistic targets,

which is then used in conjunction with a Kinematic Theory model to generate trajectories.

Similarly to the Sigma Lognormal model, Bezine et al. (2004) develop a “Beta Elliptic” model,

where handwriting trajectories are generated with the vectorial superposition of ballistic movement

primitives using a beta function and an elliptic arc (rather than a Sigma Lognormal and circular arc).

Ltaief et al. (2012) use a neural network to learn the mapping between the Beta Elliptic parameters and

the resulting trajectory. The network is then used instead of the model as a trajectory generator. While

the results are comparable to the use of the Sigma Lognormal model, there is less justification avail-

able (as a good model of human limb movements) and much less published material to compare with.

In Chapter 9 we will use a mapping with the parameters of the Sigma Lognormal model to generate

example-based trajectory stylisations.

3.5.3.4 Other methods

Del Vecchio et al. (2003) describe drawing motions via the combination of basic primitives that are re-

ferred to with the term movemes. A moveme is defined mathematically as a linear dynamical system

that can uniquely describe a part of a motion. Stettiner and Chazan (1994) reproduce the planar ve-

locity of handwritten characters with the impulse response of a slowly time varying second order linear

system. Dynamical system parameters are fitted to uniformly sampled input examples using a Gaus-

sian Mixture Model (GMM). The output is a distribution that can be stochastically sampled to generate

variations of a handwritten character based on the input examples. In Chapter 5 we also present a

method based on the combination of a linear system with a mixture of Gaussians. The method also

outputs a trajectory distribution that can be stochastically sampled to generate variations according to

the input data.

Bullock et al. (1993) develop the VITEWRITE (Vector Integration to Endoint WRITE) model, which

3.6. Letterform representation, generation and stylization 67

simulates neural signals to generate smooth handwriting trajectories that interpolate a motor plan

made by a sequence of positions. Grossberg and Paine (2000) propose an extension to Bullock’s model,

AVITEWRITE (Adaptive VITEWRITE), which simulates visual attention and focus to adaptively learn

handwriting trajectories by imitation. Both models attempt to accurately model the neural processes

involved in handwriting production. The models successfully reproduce many effects seen in instances

of real handwriting: such as power laws, isochrony, and also an increase in speed as learning progresses.

Nevertheless, a lower performance in reproducing handwritten traces (Paine et al., 2004) and the archi-

tectural complexity of the models, limits their applicability for the task of style synthesis and computer

graphics applications.

3.6 Letterform representation, generation and stylization
While modern fonts are commonly represented as a set of vector outlines (Karow, 1994), many of the

visual conventions used in conceiving and creating a font or glyph can be traced back to their origins as

stroke-based handwriting and calligraphy (Noordzij, 2005; Wang, 2013). The stroke is the fundamental

primitve of calligraphy: the mark left by a gesture made with a pen, brush or another writing tool, from

a starting position and moving towards a target. Tag-writing, at the origin of modern graffiti art, like

calligraphy, is “handwriting pursued for its own sake, dedicated to the quality of shapes” (Noordzij,

2005), and it too is based on strokes. The outline of a glyph often conceals a latent structure as a set of

generalized strokes that, when combined, closely reproduce the glyph’s shape.

The wide adoption of outline-based representations can be traced back to the transition from

hand produced letterforms to “punch-cutting” letterforms carved in steel, and the subsequent need to

rapidly and efficiently convert existing type-faces to digital form. With this being the modern standard,

the sustained contemporary interest in a stroke based representation can be traced back to the META-

FONTsystem (Knuth, 1999). Donald Knuth defined a font description language that, in its first version,

used the stroke metaphor to describe letterforms parametrically with a raster shape swept along a set of

splines. Knuth (1999) demonstrated how this representation is useful to generate parametric variations

of a letterform, ranging from different stroke weights, to more extreme effects that mimic handwrit-

ing or produce abstract letterforms. However, describing letterforms in MetaFont is not intuitive, and

requires programming and mathematical knowledge that has limited its wider adoption in the visual

design fields.

3.6.1 Structural representations of letterforms

Ghosh and Bigelow (1983) suggest that a MetaFont system should “provide a descriptive scheme in

terms of which structural features of individual letter shapes can be efficiently described and talked

about”, where “efficiently” refers to the requirement that this description should be understandable

both by a human (designer) and a computer. The authors suggest a representation of letterforms con-

sisting of basic stroke-like primitives that can be assembled along a graph structure.

The variety of possible instantiations of a letterform includes variations of this structure, as well

as variations of the way in which strokes are constructed along the structure. Hofstadter (1982) em-

phasises the possibly infinite variety of different structures and shapes that can result in a recognisable

letterform. To study the process of letter creation in a tractable manner, he proposes a simplified letter

68 Chapter 3. Background

representation: a “grid-font” consisting of segments on a 3×7 grid. The project called “Letter Spirit”

(Hofstadter et al., 1993; McGraw Jr, 1995; Rehling, 2001) is specifically aimed at modelling ways in which

the human mind represents the concept of a letter and its style (or “spirit”). Letter analysis and genesis

are implemented with a multi-agent system, where each agent (“codelet”) competes in the solution of a

small cognitive sub-task. Each glyph is defined by its constituting parts called “roles” that are effectively

similar to strokes. As an illustrative example, the letter “P” is described by two roles: one is a vertical bar,

the other is a concave bowl-like profile with its extremities connected to the upper part of the vertical

bar.

Cox et al. (1982) also propose an abstract graph-based description of letters simply called “skele-

ton”, that distinguishes functional and structural components from the “embellishments” that produce

different stylisation (in terms of strokes or parts, resulting in a given font). The skeleton graph edges

can be either “explicit” (i.e. visible) or “implicit” (invisible), with the latter defining spatial constraints.

Strokes are defined over a number of consecutive edges, and different stylisations are achieved by vary-

ing the stroke type. As an example, the letter “D” is made of two strokes, one vertical and one curved.

The letter structure is defined with a series of relations:

• Meet: where two edges meet at a vertex. Can be executed with variable smoothness (e.g. a vertex

located at the middle of the bowl of a “D”, with a skeleton similar to a B)

• Join: where two edges meet at a vertex with a sharp corner (e.g. a “V”)

• Link: where edges meet at a “T” junction.

• Cross: where two edges cross each other (e.g. such as for an “X”)

In the fields of semiotics, Watt (1988) studies the evolution of the Latin alphabet with two com-

plementary descriptions of the letterform: one iconic where the letter is described in its basic structure

as a sign, and one kinemic — the study of gestures as body language — where the letter is considered

as a dynamic representation of the movements that produce its trace on canvas. As an example, Watt

demonstrates how the same iconic representation transforms an upper case “A” into a lower case “α”

through a process he calls facilitation, which is the tendency to reduce effort during the kinemic pro-

duction of a letter. While not well known in the computing domain, the combined dynamic and seman-

tic representation of letters proposed by Watt offers interesting ideas for the computational synthesis

of calligraphic art forms. The author also posits that the evolution of alphabets follows the evolutionary

principles proposed by Lamarck (Burkhardt, 2013) rather then the more generally accepted Darwinian

approach. A similar concept is separately proposed by Blanchard (1999) in the context of paleography

with an “abstract ductus”, equivalent to a schematic motor plan for a trace that can explain again the

evolution of a capital “A” into “α”.

In summary, a simple graph-based representation can be useful to distinguish different stylisa-

tions of a letter from its structure, where stylistic variations are given by different movements (Watt,

1988; Blanchard, 1999) or strokes and parts (Cox et al., 1982; Ghosh and Bigelow, 1983; Hu and Her-

sch, 2001) that are combined along this structure. In the next section we review different methods to

generate strokes.

3.6. Letterform representation, generation and stylization 69

3.6.2 Stroke representations

The MetaFont system described different strokes with raster brush footprints swept along a set of para-

metric curves. Since then, many stroke generation methods have been developed, which can be used

in conjunction with a structural representation of a letterform in order to render it and stylise it differ-

ent ways. The computer graphics sub-field of Stroke Based Rendering (SBR) is aimed at mimicking the

appearance of images made with painterly media. Many approaches have been proposed to simulate

painterly brush strokes, for example raster based (Strassmann, 1986), texture synthesis (Yu and Peng,

2005), with a physical model of brush bristles (DiVerdi, 2013), fluid simulation (Curtis et al., 1997; Way

et al., 2006), or with vector based methods (Hsu and Lee, 1994; Su et al., 2002). Scalera et al. (2017)

mimic the appearance of spray paint with a Gaussian model of aerosol paint and ink deposition. With

the aim of mimicking strokes in comics drawings, Saito et al. (2008) vary brush thickness as a function

of curvature. These authors do not emphasise that their approach is consistent with the isogony prin-

ciple, which in the kinematic domain relates to computing brush thickness as an inverse function of

trajectory speed. Ferrer et al. (2015) exploit the smooth kinematics produced by the Delta Lognormal

model to generate realistic ball-point pen strokes. Pen pressure and ink depositions are determined

with an inverse function of trajectory speed. In Chapter 4 we also exploit the kinematics of the Sigma

Lognormal model to develop a brush model that we use to render synthetic graffiti tags.

Yu and Peng (2005) employ a texture synthesis approach to render an abstract and expressive

style of Chinese calligraphy (Cau Shu) which is characterised by rapid and expressive brush strokes.

Different types of brush strokes are rendered by sweeping a deformable and rotating ellipse. A realistic

rendition of brush patterns is achieved by re-synthesising collected calligraphic samples with Markov

random fields (Cross and Jain, 1983). Lu et al. (2014) also use a texture synthesis approach to generate

a decorative stylisation of a user defined path from pattern images.

The PostScript page description language is a widely adopted standard in various vector graphics

applications, including electronic publishing and desktop publishing. It defines a stroke command

that transforms a path into an outline. A PostScript stroke is defined by an envelope of constant width,

different caps determining how a stroke ends and a join type determining how segments meet at a

corner (rounded, bevel or miter). A miter joint connects sides of the envelope at their intersection. A

miter limit defines a minimum angle threshold that avoids “spikes” when the angle at the joint is acute,

and replaces the miter joint with a bevel.

Within a large body of work on control theoretic formulations of quintic B-splines, Fujioka, Kano

et al. (Fujioka et al., 2006; Fujioka and Miyata, 2011) develop the so called “Dynamic Font Model”, aimed

at reproducing the strokes of Japanese calligraphy. B-spline control point locations are optimised so the

resulting curve minimises a tradeoff between jerk magnitude and reconstruction error of an input tra-

jectory. This allows variations in smoothness that can be used, for example, to mimic the appearance

of cursive calligraphy or to generate smooth ligatures. Variably thick brush strokes are generated by us-

ing 3D trajectories and varying brush thickness based on the distance to a drawing surface. Seah et al.

(2005) also develop an extension to B-splines that produces variably wide strokes with the addition of

a coordinate that specifies a smoothly varying radius function. The method provides some desirable

properties for CAGD applications, such as extensionality or the possibility to precisely compute inter-

sections (Ao et al., 2018). In Chapter 5 we develop an optimal control method similar to the one of

70 Chapter 3. Background

(a) (b)

Figure 3.2: Example of a skeletal stroke. (a) An arrow-shaped prototype. (b) Deformation of the pro-
totype along a spine (dashed red). The corner in the spine would produce a “fold” (gray),
which is usually removed.

Fujioka and Miyata (2011), which is not based on B-splines but provides additional structure and flex-

ibilities that are useful for our use case of graffiti synthesis. The method also supports smooth variably

wide strokes similarly to Seah et al. (2005).

With the specific aim of font design, Jakubiak et al. (2006) describe a stroke model, consisting of

path paired with a variably wide thickness profile and arbitrarily shaped caps. Schneider (2000) devel-

ops a similar method, but also defines a way to produce smooth blends where two strokes intersect. Hu

and Hersch (2001) develop a component-based representation of fonts, consisting of parametric shape

primitives like “bars”, “serifs”, “terminals” or “sweeps”, where the latter are similar to strokes. The au-

thors observe that when generating sweeps, it is desirable to offset the control points of a Bézier curve,

rather than the curve itself, which produces visually more pleasing results.

Skeletal strokes (Hsu and Lee, 1994) is another widely adopted and flexible technique, which can

reproduce strokes identical to the ones generated by PostScript but also a variety of other painterly and

graphical effects. An input shape, called a prototype, is deformed along a destination path, called a spine

(Figure 3.2.a). The deformation is performed by mapping portions of the prototype to portions of the

spine, and then applying a deformation that depends on a variable width profile that maps distances

along the spine to a pair of widths perpendicular to the spine (Figure 3.2.b).

3.6.2.1 Graffiti strokes: Self overlaps and layering.

One known issue with skeletal strokes is the appearance of folds in high curvature portions of the spine

(Figure 3.2.b, in gray). This is generally considered undesirable, and several approaches have been

proposed to adjust (Lang and Alexa, 2015) or to remove (Hsu and Lee, 1994; Asente, 2010) such features.

Contrary to those, in Chapter 6, we exploit the folding behavior to mimic artistic self-overlapping effects

that are often seen in graffiti art.

Differently from traditional type design and lettering, the strokes in graffiti pieces are often in-

terlocked in complex ways and may have self-overlapping parts and loops (Ferri, 2016). Rather than

combined with a simple union, they are superimposed and then traced, revealing an outline that is

evocative of a 3D composition. Conventional stroking algorithms do not support these kinds of effects,

which usually require a user to intervene by either masking parts of the outline (Wiley and Williams,

2006) or manually hiding the edges of a planar map representation of a drawing (Asente et al., 2007).

Wiley and Williams (2006) develop “Druid”, a system for designing interwoven drawings. The sys-

tem resolves overlaps between spline curves with a local labelling of crossings. However, our experi-

3.7. Letterform stylisation and generation 71

ments found their method unreliable in the presence of the folds and loops, such as the ones that are

generated by the skeletal stroke algorithm (Figure 3.2.b). This can lead to edge visibility errors that

propagate around the outline. A similar stability issue is known for certain hidden line removal ap-

proaches in 3D (Appel, 1967; Graphics and Applications, 1988). McCann and Pollard (2009) develop an

interactive system for non-globally layering transparent bitmaps based on detecting regions of overlap,

but it does not handle objects overlapping themselves. Igarashi and Mitani (2010) develop a similar

method for 3D objects on a plane, which does permit self-overlaps. In Chapter 6 we develop a similar

local layering method which operates on the outlines of 2D objects.

Asente et al. develop “LivePaint” (Asente et al., 2007), an interactive method for editing and paint-

ing planar maps (Baudelaire and Gangnet, 1989) that maintains the original underlying geometry. How-

ever, creating and modifying overlaps requires manually assigning appropriate stroke and fill attributes

to edges and faces of the map. With a similar application in mind, Dalstein et al. developed Vector

Graphics Complexes (VCG), a data structure specifically aimed at processing and editing potentially

overlapping and intersecting vector art in a manner similar to planar maps, while maintaining topo-

logical and incidence relations (Dalstein et al., 2014). Our local layering implementation, in Chapter 6,

also relies on planar maps, but in addition it maintains the structural information of a drawing across

edits through a stroke-based representation.

3.7 Letterform stylisation and generation
In the previous sections we have implicitly argued that the combination of (i) a structural representa-

tion of a letter with (ii) a physiologically plausible model of trajectory formation paired with (iii) differ-

ent stroke generation and rendering methods, can be used to generate a variety of stylisations of the

letterform. In the first part of this thesis, we develop a set tools and primitives with the specific aim of

implementing this framework for the case of graffiti and calligraphy. In the second part of the thesis, we

seek to recover a structural representation and stroke primitives from existing geometry, in which infor-

mation about a generative movement or an underlying stroke structure may be latent or unavailable.

Recovering this underlying structure makes it easier to stylize and modify the input geometry in a way

that would be difficult to achieve with image-based or geometric transformations alone. In addition,

this procedure converts existing examples of tags, fonts, or other types of outlines, into a rich source of

structures that can be used to procedurally generate graffiti and calligraphy in a variety of styles.

In the next sections we first review exiting works (summarised in Table 3.4) that have approached

problems similar to ours, that of handwriting synthesis (Section 3.7.1) as well as calligraphy and font

stylisation (Section 3.7.2). Some of the stylisation methods also rely on the recovery of strokes from

character or glyph outlines, but most of these methods either require user assistance or assume a spe-

cific and restricted class of inputs. In order to automate this procedure, we consider concepts that have

emerged in shape analysis and visual perception, and we review these in Section 3.8; these concepts

help us build the foundation for the methods developed in part II of this thesis.

3.7.1 Handwriting synthesis

In handwriting analysis and synthesis, a distinction is usually made between online and of-

fline data (Plamondon and Srihari, 2000). Online data consists of temporally ordered strokes,

72 Chapter 3. Background

References Type Structure Strokes Method Vector

Graves (2013),
Ha and Eck (2018),
Tang et al. (2019)

handwriting/drawing 3 3 online 3

Choi et al. (2003),
Choi et al. (2004)

handwriting 3 3 online 3

Haines et al. (2016) handwriting 7 7 N.A. 7

Chen et al. (2015) handwriting 7 7 N.A. 3

Wang et al. (2002),
Wang et al. (2005)

handwriting 7 7 N.A. 3

Lake et al. (2015) handwriting 3 3 automatic 3

Lee and Cho (1998) handwriting 3 3 template-based 3

Zhang and Liu (2009) calligraphy 7 7 N.A 3

Xu et al. (2009) calligraphy 3 3 semi-automatic 3

Lyu et al. (2017) calligraphy 7 7 N.A. 7

Miyazaki et al. (2019) fonts/calligraphy 3 3 template-based 3

Rehling (2001),
Grebert et al. (1992)

fonts 3 7 N.A. 3

Tenenbaum and Freeman
(2000)

fonts 7 7 N.A. 7

Lian and Xiao (2012) fonts 3 3 template-based 3

Suveeranont and Igarashi
(2010)

fonts 3 3 template-based 3

Campbell and Kautz (2014) fonts 7 7 N.A. 3

Lopes et al. (2019) fonts 7 7 N.A. 3

Phan et al. (2015) fonts 3 3 user-guided 3

Wang et al. (2020) fonts 7 7 N.A. 7

Zhang et al. (2017a) fonts 3 3 user-guided 3

Xu and Kaplan (2007) fonts 3 7 user-guided 3

Zou et al. (2016) fonts 3 7 automatic 3

Table 3.4: Font/calligraphy/handwriting generation and synthesis.

where each stroke is usually encoded as a sequence of 2D points. Offline data consists of

images or curves, where the stroke temporal order and structure is unavailable.

In one popular handwriting synthesis approach, a system generates handwritten strings

from a few sentences written by a user, which are digitised in an online (Wang et al., 2005;

Lian et al., 2018) or offline (Chen et al., 2015; Haines et al., 2016) form. The sentences are

required to cover a sufficient variety of characters of the alphabet. These approaches assume

a mapping between the input examples and the corresponding text, which for sufficiently

readable handwriting, can be done with line and character segmentation (Haines et al., 2016)

or with a handwriting recogniser (Wang et al., 2005). This can be challenging for our use

cases of graffiti tags or calligraphy, which are usually highly stylised signatures that are often

unreadable (as meaningful text) by an untrained human.

A different approach consists in generating handwriting by concatenating a series of

predefined motor plans, one per letter of the alphabet. Different stylised trajectories are then

generated with the simulation of a movement that follows the concatenated motor plans.

Lee and Cho (1998) use this approach to synthesise Korean handwriting with a Beta Elliptic

3.7. Letterform stylisation and generation 73

model, while Ferrer et al. (2015) use a similar approach to generate synthetic signatures with

a combination of filtering and the Delta Lognormal model. The methods we will demonstrate

in the following chapters can all be applied to concatenated templates in a similar manner.

The Sigma Lognormal model of handwriting has been widely used to generate realistic

variations of handwriting, with applications that vary from the generation of synthetic sig-

natures (Galbally et al., 2012) to the generation of handwritten CAPTCHAs (Ramaiah et al.,

2014). These methods rely on a reconstruction procedure that recovers the needed parame-

ters from the velocity and geometry of a digitised trace. This can be done with a number of

state of the art methods (O’Reilly and Plamondon, 2008; Plamondon et al., 2014; Fischer et al.,

2014; Ferrer et al., 2018), but all these assume that the input already encodes a velocity profile,

thus limiting their applicability to digitised movements only. In Chapter 8 we develop a novel

method that infers Sigma Lognormal parameters from the geometry of an arbitrary trace,

which effectively recovers a latent generative movement. We then use this reconstruction in

combination with a Recurrent Neural Network (RNN) to generate example-driven stylisations

of handwriting, tags or other kinds of inputs in vector form.

Recently, a growing number of methods have used RNNs to synthesise handwriting

(Graves, 2013; Zhang et al., 2017b; Tang et al., 2019) as well as drawings (Ha and Eck, 2018).

These models are usually trained on rather large training sets consisting of online handwrit-

ing data in the form of digitised point sequences. As a result, the predictions of the networks

also consist of temporally ordered points, which mimic the movements followed by a writing

pen. It is interesting to note that the more recent methods (Ha and Eck, 2018; Zhang et al.,

2017b; Tang et al., 2019) all use polyline simplification to simplify the dense training trajec-

tories into sparse sequences of points, suggesting that this improves training speed and ro-

bustness. However, the authors do not note that this simplification is similar in practice to a

motor plan the describes the fine evolution of a trajectory. We investigate this concept more

in depth in Chapter 9, where we explore the combination of an RNN model similar to the

one developed by Graves (2013), with a representation of movement in terms of the Sigma

Lognormal model.

3.7.2 Font and calligraphy generation and stylisation

One well studied problem in the domain of font generation and stylisation, was initially pro-

posed by Hofstadter et al. (1993) in the “Letter Spirit” project: given a few exemplars of the

letters of a font, generate all the alphabet with a style (or “spirit”) that is consistent with the

exemplars. The letter spirit project culminated with the thesis of Rehling (2001), who de-

scribed a complex cognitively inspired architecture that generated complete grid fonts with

a style that is similar to a few examples given by a user. In the meantime, Grebert et al. (1992)

approached the same problem with a simpler architecture consisting of a three layer neural

network. The network perfectly reproduced the letters it was trained on and generated the

74 Chapter 3. Background

missing letters with similar regularities to the input exemplars, but not a necessarily readable

structure (Rehling, 2001).

The same kind of problem has been approached also with bitmap representations of

fonts. Tenenbaum and Freeman (2000) developed a similar system using a bilinear model

and a vector field representation of glyph rasters. More recently, a number of Deep Learning

methods have been proposed which can predict the missing glyphs for instances of fonts

(Azadi et al., 2018; Hayashi et al., 2019; Gao et al., 2019) as well as calligraphy (Lyu et al., 2017;

Wen et al., 2019). One common limitation of these methods is that they produce bitmap

outputs with a relatively low resolution. In practice, these bitmaps can be vectorised, but this

would still limit the possibilities of editing and varying the results in a meaningful manner.

Hofstadter et al. (1993) use fonts as an example of the vast range of structures and shapes

that a recognisable letterform can assume, and to demonstrate the challenge of modeling the

creative process underlying letter stylisation and design. At the same time, if we temporar-

ily ignore the complexity of this creative process, fonts can also be seen as an equally varied

source of letter structures and shapes in a variety of styles, languages and writing systems.

Indeed a number of methods use font outlines as a starting point to generate stylised letter-

forms.

Some methods approach font and calligraphy stylisation as an outline correspondence

problem. Zhang and Liu (2009) synthesise new calligraphy samples by employing an energy

minimising deformation between the outlines of different character samples. Campbell and

Kautz (2014) generate a latent manifold from font outlines with the same topological struc-

ture and generate new fonts by interpolating and extrapolating points on the manifold. Bal-

ashova et al. (2019) use a template driven approach to decompose an outline into parts that

they also call strokes. This provides additional structure that allows to apply a method similar

to the one of Campbell and Kautz (2014) also to outlines with different topological structures.

Such outline-based methods do not provide sufficient control to mimic the variety of stylisa-

tions that can be observed in graffiti art.

Other methods, adopt a similar correspondence-based approach but operate at the level

of strokes. Depending on the method, strokes are either extracted automatically (Xu et al.,

2009; Lian et al., 2018) from a font outline or with a user guided (Phan et al., 2015) or template-

based procedure (Suveeranont and Igarashi, 2010). Xu et al. (2009) use a semi-automatic

procedure to decompose example outlines into strokes, and then generate calligraphic styli-

sations of a character with a weighted interpolation or extrapolation between strokes. The

strokes are then rendered with a realistic brush model. Xu et al. (2012) use feedback from 5

expert calligraphers to train a neural network that automatically evaluates the results of the

system (Xu et al., 2009) and that is used to automatically tune the stylisation parameters. Lian

et al. (2018) also use an automatic segmentation into strokes to generate Chinese handwrit-

ing and calligraphy stylisations from examples. Suveeranont and Igarashi (2010) develop a

3.7. Letterform stylisation and generation 75

method similar to the one proposed by Xu et al. (2009) but extended to arbitrary font out-

lines. However the stroke segmentation relies on a set of predefined templates. Phan et al.

(2015) rely on a user guided stroke decomposition to solve a problem similar to the one pro-

posed by (Hofstadter et al., 1993) and use a manifold similar to the one proposed by Campbell

and Kautz (2014) but computed for segmented strokes.

All these methods approach font generation and stylisation exclusively as a style transfer

from one ore more example glyphs to an entire font. Different approaches exist, for example

Zhang et al. (2017a) use simple user defined sketches to segment words written in a given

font into strokes and then reconstruct the word with shapes that are semantically similar to

the written word. Xu and Kaplan (2007) and Zou et al. (2016) automatically generate “cal-

ligrams” consisting of letters that are deformed to fit inside a given shape outline. Zou et al.

(2016) guide the packing procedure by decomposing the outline into parts (Luo et al., 2015)

by manually identifying protrusions in the letter that are effectively similar to strokes.

3.7.3 Stroke segmentation

The problem of decomposing an outline into strokes is challenging since it involves disam-

biguating regions where multiple strokes may cross or overlap. This kind of problem has been

addressed by many methods for the traces of handwriting (Plamondon and Privitera, 1999;

Lake et al., 2015) or drawing (Favreau et al., 2016). However, these methods assume an input

produced with uniformly thin strokes, which is often not the case for fonts.

Of the methods discussed in the previous section, the only ones that rely on automatic

segmentation are focused on Chinese characters. The problem of stroke segmentation for

Chinese, or more generally east Asian characters, is well developed. Decomposing East Asian

characters, which are often based on a hierarchical structure of radicals and strokes, has been

well studied (Wang et al., 2002; Sun et al., 2014; Chen et al., 2017) and extensive datasets are

available for data-driven methods. For example, Kim et al. (2018) train a neural network on

the “makemeahanzi” (Kishore, 2018) dataset, resulting in a data-driven method that decom-

poses similar characters into potentially overlapping strokes. The segmentation method of

Lian et al. (2018) is automatic and robust, but it also exploits the precise hierarchical structure

of Chinese characters and relies on a dataset of a significant number (27,533) of manually la-

belled and categorised characters.

These same methods usually fail with Western fonts and glyphs, which have a wider

range of stylistic variations and decorations, and which often blend components into each

other in ways that make segmentation difficult. This ill-posed problem (Lamiroy et al., 2015)

has been partially addressed with user-defined templates (Herz et al., 1997; Suveeranont and

Igarashi, 2010; Phan et al., 2015; Zhang et al., 2017a; Balashova et al., 2019) or a detailed anal-

ysis of glyph outlines (Shamir and Rappoport, 1996). In particular, the method of Shamir

and Rappoport (1996) automatically identifies typographic features such as serifs, bars and

76 Chapter 3. Background

stems. However, it does not disambiguate more complex cases where multiple strokes in-

tersect. The method relies on the identification of salient features along an outline, such as

extrema (of curvature), inflections, cusps, corners and relatively straight regions. In Chap-

ter 11 we introduce a related geometric approach, while in the next section we review the

foundations that inform its implementation.

3.8 From shape to strokes
The term “shape” is used in everyday language, with expressions such as “the shape of a tree”,

“a spherical shape”, “an abstract polygonal shape”, which seldom require any additional def-

initions to be intuitively understood. At the same time, a precise definition of shape is ill

posed (Koenderink, 1990), and it is rarely found in the computational literature, where the

assumption is usually made that the term refers to some geometric description of an object

or its outline, let it be contour samples or pixels in 2D, or triangles or voxels in 3D. Computa-

tional geometry, computer graphics and mathematics are full of useful, and different “shape

representations”, and a precise definition of the term is useful for their categorization and to

understand how they are related. Arnheim (1954) defines shape as an “active occupation” of

the mind (p. 43):

“..in looking at an object, we reach out for it. With an invisible finger we move

through the space around us, go out to the distant places where things are found,

touch them, catch them, scan their surfaces, trace their borders, explore their

texture.”

A related, but more precise definition is proposed by Koenderink (1990), who defines shape

“operationally” as the structure resulting from a series of measurements made in a “field”

surrounding an object’s outline. Shape depends as much on the object as it depends on the

method that is used to “probe” this field. Leymarie (2006) takes this definition further, by

viewing shape representations as sequences of transforms, which emphasise or reveal certain

properties of an object, while de-emphasising or discarding others. Transform sequences can

be organized into two main categories: horizontal transform sequences that act along an out-

line, and vertical transform sequences that act perpendicular to an outline. This dichotomy

bears similarities to the one, commonly used for two dimensional shape, of contour based

geometry and region based geometry (Singh, 2015). A sufficiently informative shape represen-

tation can be used to characterise an object’s morphology, that is to study its form intended

as perceived visual qualities such as “roundedness”, “sharpness” (Leymarie, 2006; Albertazzi,

2019).

A countless number of shape representation methods have been developed in the do-

mains of computer vision and graphics. A great majority of these methods is aimed at provid-

ing quantitative measures in terms of dimensionless quantities that are useful for recognition

3.8. From shape to strokes 77

or shape retrieval tasks (Zhang and Lu, 2004; Rosin, 2005), but are less useful for our goal of

shape analysis for generative tasks such as stylisation and abstraction.

It is a commonly held view that the process of drawing or painting is like “learning to

see” (Koenderink and van Doorn, 2008), and it can be argued that a system aimed at mim-

icking a visual art form should rely on representations and principles that are consistent with

the ones that are at the basis of the human visual system (Mi, 2006). As a result, the following

sections will narrow the focus on shape representations that have some form of perceptual

grounding, building up from curvature based shape representations (Section 3.8.1) to sym-

metry based shape representations (Section 3.8.2), to principles of perceptual grouping and

contour integration (Section 3.8.3). These representations are the basis for a higher level de-

scriptions of shape, in terms of perceptually meaningful parts (Section 3.8.4) and ultimately

in term of strokes, which we will recover in Chapter 10.

3.8.1 Curvature based shape representations

The study of the curvature along a contour has been the focus of decades of research in var-

ious fields, including visual perception and cognitive science, as well as computer vision

and pattern recognition. Curvature extrema are perceptually important points (De Winter

and Wagemans, 2008b) at which the curvature function reaches a local minimum or max-

imum. For regular 2D curves, there are four types of curvature extrema, which are often

denoted as M+,m−, M−,m+ (Richards and Hoffman, 1985; Leyton, 1987; De Winter and

Wagemans, 2008b), where M+ and m− respectively denote positive maxima and negative

minima of curvature, while M− and m+ respectively denote negative maxima and positive

minima of curvature (Figure 3.3). The first pair of extrema types (M+,m−) are absolute max-

ima of the curvature function that correspond to “sharper” features (turns, bends) and are the

ones typically taken into consideration in methods aimed at identifying curvature extrema.

The second pair of extrema types (M−,m+) map to absolute minima of the curvature func-

tion and thus correspond to flatter or squashed or compressed shape regions (Leyton, 1988).

For piecewise continuous curves, corners and cusps can be viewed as the limits to positive

and negative infinity of curvature for absolute maxima (M+,m−) (Leyton, 2006). Inflections

are the locations where the curvature function changes sign (e.g. the midpoint of an “S”-

like curve) and are also considered to be perceptually significant (De Winter and Wagemans,

2008b) or generally useful for the description of shape (Richards and Hoffman, 1985).

3.8.1.1 Perception of curvature

As early as 1954, before the advent of computers as a mainstream tool, Attneave (1954) exper-

imentally argued that shape information is concentrated at object contours and especially at

corners and absolute maxima of curvature along these contours. This led him to draw a now

famous picture, known as “Attneave’s cat”, which depicts a clearly recognizable cat by con-

necting absolute curvature maxima along its silhouette with straight line segments. More

78 Chapter 3. Background

recently, Feldman and Singh (2005) derived a more precise information-theoretical formula-

tion of Attneave’s claims for discrete traces by defining information content as the negative

log-likelihood, or surprisal, of deviations from straightness, measured with a von Mises dis-

tribution (a circular analogue of a Gaussian) over the turning anglesφ. For simple and closed

contours, Feldman and Singh (2005) suggest that turns towards the interior should be con-

sidered more probable, which gives a higher information content to negative minima (m−), a

result that is consistent with the hypothesis of a perceptual bias towards concavity (Hoffman

and Singh, 1997; Hulleman et al., 2000). The perceptual importance of curvature extrema is

confirmed experimentally by De Winter and Wagemans (2008b) by involving a large (for this

type of study) number (N = 161) of participants, that are asked to label perceptually salient

points along a sufficiently large set (N = 260) of object boundaries. The experimental results,

however, do not show the preference for concavities suggested by Feldman and Singh (2005)

and others, a result that is attributed to the influence of non-local factors on the preferences

shown by participants. Interestingly, the magnitude of curvature alone is not found to be a

good predictor of these preferences. In their study, (De Winter and Wagemans, 2008b) also

evaluate a number of measures of saliency for curvature extrema, including a variant of the

turning angle measure proposed by Feldman and Singh (2005). Table 3.5 gives an overview

of different measures.

Measure Short Description References Cor.

Inverse compactness Part contour length squared di-
vided by part area

De Winter and Wagemans (2008b),

Zusne (1970)
≈ 0.6

Relative size Part area divided by total area
De Winter and Wagemans (2008b),

Hoffman and Singh (1997)
≈ 0.45

Stick-out Length of part divided by
length of part base

De Winter and Wagemans (2008b),

Hoffman and Singh (1997)
≈ 0.4

Absolute curvature Absolute magnitude of curva-
ture

De Winter and Wagemans (2008b) ≈ 0.3

Turning angle Angle between perpendiculars
to flanking segments

De Winter and Wagemans (2008b) ≈ 0.85

Surprisal Negative log-likelihood of
turning angle probability

Feldman and Singh (2005) NA

Circular arc length
(
φl1l2

)
/(l1 + l2) Latecki and Lakämper (1998) NA

Table 3.5: Curvature saliency measures. Here a “part” is a contour segment containing the extremum
and delimited by the two adjacent extrema, the “flanking segments” are the segments with
length l1, l2 going from the extremum to the adjacent extrema, and φ is the absolute angle
between the normals to the flanking segments. The correlation values are the (approximate)
maximum values from the evaluation in the results of De Winter and Wagemans (2008b) (re-
fer to Figure 7 of the paper).

3.8. From shape to strokes 79

Visual search studies8 suggest that curvature representations occur pre-attentively

(Treisman and Gormican, 1988; Hulleman et al., 2000), that is early in the human visual

system, before attention is focused on a certain region of the visual field (Wagemans et al.,

2012). At a higher level, curvature plays an important role in the perceptual decomposition

of objects into parts (Richards and Hoffman, 1985; Brault and Plamondon, 1993a; De Winter

and Wagemans, 2006) and the characterization of these parts (e.g. bends, necks), a subject

that will be described more precisely in Section 3.8.4. As we have previously seen, curvature

also plays an important role in the characterisation of human movement and handwriting

by relating the kinematics of a movement to its geometry with inverse relations such as the

power law (Viviani and Schneider, 1991). These relations suggest that curvature is a potential

perceptual cue for the mental recovery of a generating movement from the geometry of its

trace (Pignocchi, 2010).

3.8.1.2 Digital curvature

A robust identification of curvature extrema and corners, or dominant points, for digitally

sampled contours can be difficult as it requires the evaluation of a second order differential

quantity, which tends to amplify the effects of digitization noise in the input. One popular

method to overcome this problem is to first smooth the digitised signal using a filter (e.g con-

volving with a Gaussian) or with some analytic function (e.g. smoothing splines) followed by

a peak finding method (Leymarie and Levine, 1989). However, this risks removing percep-

tually important features and choosing parameters that function well across a large range of

inputs remains a difficult task. One approach to address this issue is to construct a scale-

space (Witkin, 1983; Koenderink, 1984), in which features that are tracked across multiple

scales are considered more significant. Such a scale-space is very often produced by iter-

ative Gaussian filtering in the spatial domain, or via the frequency domain using wavelets

(De Stefano et al., 2005). While this approach is robust to noise, because of smoothing, it typ-

ically fails to provide an accurate estimate of curvature or to detect localised features such

as segments of approximately constant curvature (e.g circular arc segments), which are hy-

pothesised to play an important role in contour perception (Garrigan and Kellman, 2011). To

address feature localisation, Leymarie and Levine (1989) propose a structural notion of scale

using morphological operations (opening, closing) over the curvature function, resulting in

its approximation in terms of line segments.

In practice, the concept of scale defined as an implicit characteristic of a curvature func-

tion along a trace was really an attempt to attach a notion of a region of support (Teh and Chin,

1989) to a feature, such that significant features can be characterised in part by how much of a

segment of the trace being traversed they can represent. A number of methods identify such

8A visual search experimental paradigm is often used to evaluate if a given feature is computed pre-attentively. A
rapid reaction time of a search for the feature among a large number of distractors and a slow reaction time for the
reverse suggest that the feature is processed pre-attentively.

80 Chapter 3. Background

Figure 3.3: Codon types according to Richards and Hoffman (1985), together with the corresponding
triplets of curvature extrema: •m−, ■m+, ■M− and •M+. The gray and black arrows are not
part of a codon’s definition, but use the curvature extrema to demonstrate “process arrows”,
as proposed by Leyton (1988) in his process grammar. The black arrows point at absolute
maxima of curvature (m−, M+) and indicate a process that produces an indentation (from
the exterior) or a protrusion (from the interior) along the outline. The gray arrows point at
absolute minima of curvature (m−, M+) and indicate a process that “squashes” (from the
exterior) or exherts resistance (from the interior) along the outline.

support regions with an iterative traversal of trace segments surrounding a given point (eg.

Brault and Plamondon, 1993a), effectively resulting in a hybrid between a horizontal and a

vertical process. Sarfraz (2008, Chapters 11 and 12) reviews and provides implementation

details for a number of these methods, including a method developed by the author himself

(Sarfraz et al., 2006). A particularly useful example of such methods is the so-called Discrete

Curve Evolution (DCE) (Latecki and Lakämper, 1998), where a polygonal reconstruction of

a trace is incrementally refined by adding dominant points determined based on a salience

measure computed as the length of two flanking support segments and the turning angle

between these.

3.8.1.3 Curvature based shape descriptors

A number of methods organize contour-segments based on an analysis of curvature. With

the aim of object recognition, Asada and Brady (1986) describe a “curvature primal sketch”

that organizes curvature extrema into a grammar describing shape morphology, where sin-

gle extrema categorised as “corners” and “smooth bends” and groups of extrema are further

categorised as “cranks”, “ends” and “bumps”. Richards and Hoffman (1985) propose a parti-

tioning of closed contours into five features types called “codons” (Figure 3.3), contour seg-

ments defined by curvature extrema triplets characterised by a central curvature maximum

(M+ or M−) bounded by two curvature minima (m− or m+). Rosin (1993) notes that codons

do not allow for curvature discontinuities, and thus he extends the representation to include

cusps and corners. The same issue with codons is noted by Galton and Meathrel (1999), who

propose a partitioning of contours based on a grammar of “curvature types” (e.g. line seg-

ments, concave/convex curve segments, cusps). Kellman and Garrigan (2007) propose that

contour segments with constant curvature (i.e. circular arc segments, or “arclets”) are a fea-

ture detected early in the vision process which improves recognition performance (Garrigan

3.8. From shape to strokes 81

and Kellman, 2011).

Leyton (1988) proposes a conceptually different interpretation of curvature extrema

with his “process grammar”, where curvature extrema are viewed as the result of a deforma-

tion process producing a protrusion/indentation (M+,m−) or exerting a squashing/resistive

force (m+, M−) on a shape outline (Figure 3.3). The process grammar describes two types

of transformation rules, “continuation” and “bifurcation”, which describe how extrema are

created or vary during a deformation. For a concise overview of these rules refer to Leymarie

(2006).

3.8.2 Axial symmetry based shape representations

An important alternative to focusing solely on curvature as an intermediate representation,

also proposed early on by the computing community, is instead to rely on a generalization of

the symmetry axis for shape. Symmetry is the invariance of an object under a class of trans-

formations, and, in two dimensions, a symmetry axis conventionally denotes a straight line

that delimits two sides of a shape that are congruent under a reflection along the line. This

concept can be generalized to capture point-wise symmetry relations, resulting in a graph

of potentially curved axes that is commonly known as the Symmetry Axis Transform (SAT).9

Originally pioneered by Harry Blum for the description of biological shape (Blum, 1962), the

SAT is a shape representation that provides a bridge between a shape’s geometry and topol-

ogy (Blum, 1973). It consists of a symmetry axis, the centers of “maximally inscribed disks”,

paired with a radius function that maps the centers to the corresponding disk radii. The sym-

metry axis consists of one or more potentially curved axial segments, often referred to as

branches (Macrini et al., 2011; Shaked and Bruckstein, 1998), which can be organised as a

directed graph. For closed contours, the SAT is a complete shape representation since a solid

object can be fully reconstructed with a union of the maximal disks contained within its inte-

rior (Blum, 1973). Wolter (1992) and collaborators (Sherbrooke et al., 1996; Wolter and Friese,

2000) show that the SAT of the interior is an homotopy equivalent of the object as a solid,10

meaning that it describes an equivalent topology, with the advantage of doing so with a more

compact representation (Tagliasacchi, 2013). Experimental evidence suggests that SAT like

representations are likely to be part of the “machinery” used by the human brain to perceive

(Kovács et al., 1998; Kimia, 2003; Firestone and Scholl, 2014) and to recognize (Ayzenberg and

Lourenco, 2019) shapes.

3.8.2.1 SAT: definitions

Many equivalent definitions of the SAT exist emphasising different properties and leading to

different means of implementing the transform (Tagliasacchi, 2013):

9Other popular names found in the literature include: Medial Axis, Skeleton, Shock graph (in 2D) and Shock
scaffold (in 3D).

10This homotopy relationship was later demonstrated again by Lieutier (2003).

82 Chapter 3. Background

• Maximally inscribed disks: A commonly used definition is restricted to the interior of

closed contours, i.e. for solids, and considers the SAT as the union of centers of max-

imally inscribed disks(or balls in 3D) together with their associated radii. This defi-

nition is often the basis for a raster based computation of the SAT, which can be done

for example with morphological thinning or through a distance transform (Leymarie

and Levine, 1992). The popularity of this definition in the literature has led to the com-

mon misconception that the SAT is only defined for solids, while already in its early

formulation (Blum, 1967, 1973) the transform is defined for open segments as well as

isolated points or samples (making it directly related to Voronoi diagrams, since com-

monly used in CGAD).

• Grassfire analogy: A definition of the SAT that generalizes well to the case of open traces

is based on the “prairie grassfire” or meeting or collapsing wavefront analogy, in which

the maximal disk centers are given by the “quench” points (Leymarie and Levine, 1992),

or shocks (Kimia et al., 1995), at which fire fronts or waves propagating from the object

boundary meet and stop expanding. This definition can be implemented by following

the ridges of the height surface produced by a reaction process evolving over a discrete

lattice and initiated at points sampled along a trace or object boundary (Leymarie and

Levine, 1992; Kimia et al., 1995; Gao et al., 2018).

• Maximal bitangent disks: With yet another (closely related) definition, the SAT is the

locus of maximal bitangent disks, which assumes an input consisting of smooth out-

line segments built from (at least) twice differentiable curves. This provides the basis

for an analysis of the SAT under the lens of differential geometry . This definition can

be extended to accommodate for the end-points of open traces or breaks in curva-

ture (cusps, corners), for example, by defining a set of radials that interpolate along

gaps where normals do not exist (Blum, 1973) and results in an extended set of “pan-

normals” that includes both the sets of normals and radials. This allows to relax the

bi-tangency constraint to one of radial contact and leads to a SAT definition in which

each disk center is equidistant to at least two distinct trace points that are closer to the

disk center than to any other trace point. This definition permits a SAT implementa-

tion in terms of a Voronoi diagram, which, after Blum introduced his ideas in the 1960’s

and 1970’s, became widely used in the computational geometry (and CGAD) literature.

• Vornoi based methods: The (2D) Voronoi diagram of a set of points (or sites) consists

of a planar graph that partitions the plane into convex regions (a.k.a. Voronoi regions)

that are nearest to each site. Each (Voronoi) edge of the graph bisects two sites that

have generated it, and all the points along the edge are equidistant from the two sites.

It is thus possible to construct a disk that is centred along the edge, is tangent to the

3.8. From shape to strokes 83

(a) (b) (c)

Figure 3.4: Some symmetry axis variants (red), showing one of the maximal disks (blue circle) , with
two symmetric points along the outline (blue dots) and the axis point generated by the disk
(black dot). (a) Blum’s SAT is the locus of disk centers. (b) Brady and Asada’s SLS is the locus
of chord midpoints. (c) Leyton’s PISA is the locus of the shortest arc midpoint.

two generating sites and does not contain any other site. The vertices of the Voronoi

diagram are equidistant from 3 sites (in general positions) and correspond with the

circumcenter of a triangle connecting the sites that does not contain any other sites.

The set of all such triangles defines the dual of the Voronoi diagram, which is known

as the Delaunay triangulation of the sites. If we consider the disks centred at Voronoi

edges and vertices, this becomes equivalent to the maximal SAT disks introduced by

Blum in the 1960’s.11 Similarly to the SAT, one common analogy for computing the

Voronoi diagram is the one of fire fronts uniformly propagating from each site: the

points at which the fire fronts first meet (and extinguish) are the edges of the Voronoi

diagram (O’Rourke, 1998). The (2D) Voronoi diagram is very well studied in the compu-

tational geometry domain, with many robust implementations that usually compute

the diagram O(n logn) time (O’Rourke, 1998). As a result it has become one of the most

popular and practical methods to approximate the SAT for discrete (sampled) traces

inputs (Ogniewicz, 1992; Amenta and Bern, 1999; Durix et al., 2019).

3.8.2.2 SAT variants and extensions

Many extensions and variants of the SAT have been developed since its inception (Figure 3.4),

a number of which were already suggested by Harry Blum in his seminal long articles (Blum,

1967, 1973). Kimia et al. (1995) use a reaction-diffusion process initiated along a contour to

construct symmetry axes in terms of singularities or shocks, which occur at the disk centers

of Blum’s SAT. Shocks carry additional information which depends on the variation of the

11Blum’s ideas and definitions in fact correspond to what is now called the Generalised Voronoi diagram for sites
that can be points, open curve segments, solids, or combination thereof. Blum and his collaborators pioneered these
concepts through the 1960’s and 1970’s both for 2D and 3D sets of sites.

84 Chapter 3. Background

radius function, and this is used to construct a grammar of four shock types that are useful

for object understanding and recognition (e.g. indicating neck loci where one may split an

object in parts).12

In a wavefront propagation setting, the SAT is given by the points at which two concen-

tric wavefronts initiated along a trace first meet. Blum (1967) calls this a “blocked” symmetry

set and observes that additional symmetry axes can be identified by letting the propagation

continue. This results in an “unblocked” symmetry set, which is also known as full symme-

try set (FSS) and has been extensively studied mathematically, in particlar by mathemati-

cian Peter Giblin and collaborators (Giblin, 2000). The FSS captures additional symmetries

of a shape that cannot be computed with the SAT. As a simple example, consider the case

of a vertically oriented ellipse: the SAT produces a single vertical symmetry axis, while the

FSS produces an horizontal and a vertical one. While these additional symmetries may be

practically useful, in practice the FSS is challenging to compute and, with increasing shape

complexity, it produces a large amount of axes that can become impractical to manage and

interpret or use in applications.

A similar complexity issue arises with the smooth local symmetries (SLS) (Brady and

Asada, 1984), a variant of the SAT already noted earlier by Blum (1973), in which symmetry

axis points are located at disk chord midpoints rather than centers. The SLS also generates

two axes for the case of the ellipse, with the axes completely contained within its interior, and

for certain classes of shapes it can produce symmetry axes that are closer to the perceived

symmetric structure of an object when compared with the SAT (Brady and Asada, 1984, Fig.

8). However, the SLS does not maintain shape topology, and similarly to the FSS, it can be-

come impractically complex for more complicated shapes. Mi and DeCarlo (2007) overcome

these complexity issues by only computing subsets of the SLS starting from a digital estimate

of curvature extrema, and then using the resulting axes to decompose objects into potential

parts.

With the aim of defining a process-based grammar of curvature extrema, Leyton (1988)

derives the process inferring symmetry axis (PISA), a variant of the SLS in which symmetry axis

points are located at maximal disk arc midpoints. While the PISA is conceptually useful in the

framework of Leyton’s theories of shape (Leyton, 2001b, 2006), its definition remains theoret-

ical. The methods summarized here are the ones most relevant to the work presented in this

thesis, but this list is not exhaustive. Many other symmetry axis variants exist, for example

extensions to three dimensions (Leymarie and Kimia, 2001, 2007; Bucksch and Lindenbergh,

2008). For a more extensive review the interested reader is referred to the recent surveys

by Tagliasacchi (2013) and Saha et al. (2016), as well as the book on medial representations

edited by Siddiqi and Pizer (2008), and for evidence of SAT-like representations being studied

12Montanari (1969) defines a similar concept as shocks and their hierarchy, called breakpoints (initial, intermedi-
ate, final) in relation to the speed of propagation of SAT formation along its edges. Blum (1973) refers to this concept.

3.8. From shape to strokes 85

across the arts, physiology, perception and computing, refer to the recent article by Leymarie

and Aparajeya (2017).

3.8.2.3 Relationship to curvature

It has been known since early developments (Blum and Nagel, 1978), that the symmetry axis

endpoints can coincide with maxima of absolute curvature or corners of a trace, a property

that also holds for SAT variants such as the FSS, SLS and PISA (Leyton, 1987). Indeed, the

identification of curvature extrema along a contour has been widely used as a starting point

for computing the SAT in its original formulation (Leymarie and Levine, 1992), as well as the

SLS (Mi and DeCarlo, 2007). Leyton (1987) formalizes the relation between curvature extrema

and symmetry axes with the “symmetry curvature duality” theorem, which states that any

(smooth) trace segment bounded by two curvature extrema of the same type has a unique

symmetry axis that terminates at an extrema of the opposite type. Here “type” stands for the

extremum being a signed minimum (m−, M−) or maximum (m+, M+) of curvature (Figure

3.3). Leyton relies on the SLS to prove his result, but shows that it holds also for the SAT and

PISA, with the exception of absolute minima (m+, M−), for which the SAT produces no sym-

metry axes. For the case of absolute minima, Leyton proposes a theoretical variant of the SAT

that he denotes as Exscribed Symmetry Axis Transform (ESAT). The ESAT can be considered a

“dual” of the maximally inscribed disk SAT definition, for which we replace “maximally” with

“minimally” and “inscribed” with “exscribed/circumscribed”, that is the loci of all minimally

cirumscribed disks to the contour.

Hayes and Leyton (1989) and later Leyton (2006), extend the validity of these results

to the case of breaks in curvature (corners and cusps). With a related result, Kimmel et al.

(1995) show that any contour segment bounded by two generating SAT points always con-

tains at least one absolute curvature maximum. Symmetry-curvature duality provides the

basis for Leyton’s process grammar, and leads to the definition of the “interaction principle”

(Leyton, 1989), stating that symmetry axes terminating at the extrema can be interpreted as

the directions along which these processes have acted, and thus provide a mean to recover

a (plausible) “history” of the processes that give rise to a shape, starting from a circle that

is seen as perfectly symmetric “primordial egg” (Koenderink, 1990). This has led to the de-

velopment of a group theoretic “generative theory of shape” (Leyton, 2001b), which Leyton

has applied to the analysis of paintings (Leyton, 2006) as well as architecture (Leyton, 2001a).

While these results are conceptually very interesting with respect to the analysis and gener-

ation of graffiti art, Hendrickx and Wagemans (1999) have questioned the mathematical and

perceptual soundness of Leyton’s group theoretical work. However, the authors confirm the

correctness of early results such as symmetry-curvature duality.

Results such as the ones by Leyton (1987) and Kimmel et al. (1995) indicate a systematic

relation between symmetry axes and curvature extrema. However, the SAT has rarely been

86 Chapter 3. Background

used in practice for their identification. One recent exception is the work on part decom-

position by Papanelopoulos et al. (2019), in which endpoints of the SAT are used to identify

a subset of the curvature extrema and corners along object outlines, together with circular-

arc outline regions where curvature is approximately constant. However, such an analysis

based solely on the SAT does not capture all curvature extrema, because of its global nature,

in which a part of a contour may mask an existing wavefront by interacting with another first

(Belyaev and Yoshizawa, 2001).

3.8.2.4 Stability issues

One known issue of the SAT, especially in the discrete setting, is that of stability : the high sen-

sitivity to noise and boundary perturbations, which often results in spurious axial branches

that do not greatly contribute to the reconstruction of the input shape. A number of signifi-

cance measures have been proposed to mitigate this issue with a procedure known as “prun-

ing” (Shaked and Bruckstein, 1998), for example based on the propagation speed of symmet-

ric wavefronts (Montanari, 1969; Blum, 1973; Pizer et al., 2003), based on the computation

of a global minimum feature size (λ-medial axis of Chazal and Lieutier, 2005), depending on

contour-based (Ogniewicz, 1992; Bai et al., 2007), branch-based (Telea, 2012), or area-based

saliency measures (Shaked and Bruckstein, 1998; Leonard et al., 2016), as well as using a scale

space approach in the skeletal domain (Dill et al., 1987; Ogniewicz, 1992). The choice of the

method usually depends on the application, and the choice of thresholds can be challeng-

ing, similarly to the case observed for smoothing and scale spaces in the curvature domain.

Shaked and Bruckstein (1998) analyse a number of significance measures developed up to

1998 under a unified framework, and observe that certain measures such as that proposed

by Blum (1973) do not guarantee that symmetry axis topology is maintained. A number

of SAT variants have been proposed to produce more stable symmetry axes with the aim of

producing a more concise skeletal representation, closer to what could be considered the

“stick-figure” of a 2D shape.

Feldman and Singh (2006) propose a Bayesian formulation of symmetry axes, viewed as

generators of outline points. Kovács et al. (1998) propose an annulus — or thick maximal disk

— model that maps well to psychological responses of human subjects and is by nature more

robust to noise, the level of noise filtering being a function of the annulus band’s width which

"captures" contour points or edge data. Aparajeya and Leymarie (2016) propose an efficient

implementation of this model and demonstrate its use in emphasising dominant points of

articulated shapes as well as in the study of drawings and painting by famous visual artists

(Leymarie and Aparajeya, 2017).

3.8.3 Perceptual grouping

Perceptual grouping is the way in which the visual system groups elements (points, seg-

ments, edges, shapes) into perceptual units , a process that is generally accepted to occur

3.8. From shape to strokes 87

pre-attentively (Brooks, 2015). For example, perceptual grouping is responsible for the way

in which a sequence of closely spaced dots can be perceived as a single entity consisting of

a curve. The identification of five fundamental perceptual grouping principles: proximity,

similarity, common fate, good continuation and closure (Table 3.6), can be attributed to the

pioneering works of the Gestalt school of psychology, and in particular to Wertheimer (1923).

To this day, these principles are still considered to be valid and have resulted in a large body

of research in the domains of perception and neuroscience as well as in a variety of compu-

tational models. The reader is referred to the excellent reviews by Wagemans et al. (2012),

Brooks (2015), and Elder (2015) for comprehensive reportings on early and novel research

and results on this important subject.

Principle Short Description

Proximity Relatively close stimuli are grouped into perceptual units

Similarity Similar stimuli (in color/shape/orientation) are grouped into perceptual
units

Common fate Similarly moving stimuli are grouped into perceptual units

Good continuation Tendency to group oriented elements that are perceived to be part of the
same smooth curve

Closure Tendency to complete simple shapes when these are occluded or with some
gaps

Table 3.6: Main perceptual grouping principles. Refer to the chapter of Brooks (2015) for a more de-
tailed exposition of these and a series of other more novel principles.

3.8.3.1 Contour integration

The principle of good continuation, and more specifically, the related process known as con-

tour integration, are of particular interest with respect to this thesis. Contour integration is

the process underlying the ability of the visual system to distinguish a curve from disjoint

elements, to perceive illusory contours induced by figures such as the Kanizsa triangle or

to complete contours under occlusion (Kanizsa, 1979). When considering a letterform con-

sisting of a combination of intersecting or overlapping strokes, contour integration is likely

responsible for the ability to discern the individual generating strokes rather than fuse these

or mis-interpret their relationships.

Ullman (1976) poses a series of four properties that a completion curve must possess to

connect two disjoint contour segments across an occlusion: (i) the curve should be invariant

to rotation, translation and scale (isotropy), (ii) it should be continuous and differentiable

(smoothness), (iii) it should minimise curvature (minimum curvature) and (iv) it should be

invariant to a reduction of the occlusion’s extent (locality). Kellman and Shipley (1991) pro-

pose that whether two occluded contour segments can be integrated and perceived as a unit

88 Chapter 3. Background

depends on their relatability, which occurs if their linear extensions intersect at an obtuse

angle. Field et al. (1993) model the response of orientation-tuned cells in the primary visual

cortex (V1) to adjacent cells with an association field that decays with distance and devia-

tions from collinearity. A concept similar to association fields was proposed earlier by Parent

and Zucker (1989) with the aim of inferring traces and curves from grayscale images. To this

end, the authors propose a model that relates oriented elements based on cocircularity, i.e.

whether two oriented elements are approximately tangent to the same circle, and based on a

discrete partitioning into ranges of curvature magnitude. Yen and Finkel (1998) also rely on

cocircularity as the basis for a biologically inspired model of V1 neurons, which results in as-

sociation fields that decay with a Gaussian function of distance and deviations from cocircu-

larity. A similar association field model is the basis of the tensor voting framework, developed

by Medioni and colleagues (refer to Maggiori et al. (2015) for a technique overview), which

has been widely used in pattern recognition and computer vision applications, and in par-

ticular, has been used to disambiguate overlapping parts in simple letterforms and numbers

(Massad and Medioni, 2001).

A different but related approach to contour integration is pioneered by Mumford (1994),

who models completion curves with a stochastic process in which tangent directions vary ac-

cording to a Brownian motion. The maximum likelihood completion curve of the underlying

distribution is an elastica, a curve than minimises the total square magnitude of curvature

and is closely related to the Euler spiral (Levien, 2008). With a similar reasoning, Williams

and Jacobs (1997) and later Williams and Thornber (2001) propose “stochastic completion

fields”, a model which explains contour integration, as well a number of illusory contour

formation instances, by using particle trajectories that follow a random walk in a lattice of

planar positions and orientations. Ernst et al. (2012) formulate stochastic completion fields

with a generative model of the conditional link probability of one oriented element relative

to another one. The probability distribution consists of the product of a radial and an angular

component. The radial component is based on an exponential function that decays with dis-

tance, while the angular component parameterises deviations from perfect cocircularity and

deviations from zero curvature with the product of two von Mises distributions — analogs

of Gaussian distributions with circular supports. The authors empirically determine model

parameters that are optimal with respect to experimental data.

3.8.4 From parts to strokes

The representations discussed in the previous sections all come into play for a representa-

tion of shape in terms of higher level perceptual units, or parts. Psychophysical experiments

(Xu and Singh, 2002; De Winter and Wagemans, 2006), as well as results in computer vision

and pattern-recognition (Siddiqi and Kimia, 1995; Macrini et al., 2008), suggest that part-like

representations are intrinsic to our visual system and are essential to shape understanding

3.8. From shape to strokes 89

Principle Short Description References

Codons Part of a contour bounded by two neg-
ative minima of curvature. Can be of 6
types.

(Richards and Hoffman, 1985)

Transversality The union of two interpenetrating ob-
jects is likely to have a concave crease
where the objects join

(Hoffman and Richards, 1984)

Minima Rule Pairs of concavities (m−) are likely can-
didates for the segmentation of an ob-
ject into parts

(Hoffman and Richards, 1984)

Limbs Parts delimited by a line that connects
two m− points, and where the line
forms a good continuation with the ob-
ject outline at least on one side

(Siddiqi and Kimia, 1995)

Necks Part cuts corresponding with a narrow-
ing of the shape (local thickness mini-
mum)

(Siddiqi and Kimia, 1995)

Short-cut Rule The human visual system prefers to
connect segmentation points that are
close together. The cut (a straight line)
must cross a local axis of symmetry
and connect at least one negative min-
imum of curvature

(Hoffman and Singh, 1997)

Ligature Centers of the SAT disks touching two
distinct contour points with negative
curvature

(Blum and Nagel, 1978)

Semi-ligature Centers of the SAT disks touching one
contour point with negative curvature

(Blum and Nagel, 1978)

Table 3.7: Summary of the main principles used for the decomposition of objects into parts.

and object recognition, description and categorisation (Singh and Hoffman, 2001). Consider

for example the object category of “chairs with four legs” or, more specifically to the context

of this thesis, the category of “X” letters consisting of two crossing strokes. Decomposing an

object into perceptually meaningful parts is an ill-posed problem: multiple ambiguous hy-

potheses are acceptable, and their selection depends on subtle perceptual cues (De Winter

and Wagemans, 2006) and on domain knowledge and functional or causal attributes (Spröte

et al., 2016). However, psychophysical results suggest that similarly to perceptual grouping

(Brooks, 2015), formulating early part-segmentation hypotheses (Xu and Singh, 2002) is also

a low-level process that occurs pre-attentively, or at least very early in the vision process.

90 Chapter 3. Background

3.8.4.1 Part decomposition principles

A number of early theories of part decomposition assume a volumetric representation of ob-

jects, and hypothesise that parts are perceived by matching a predefined set of primitives

such as generalized cylinders and cones (Marr, 1982) or “geons” (Biederman, 1987). Singh

and Hoffman (2001) argue against this hypothesis, suggesting that parts emerge early in the

vision process from geometric principles, “regularities of nature”, which may then lead to

higher level primitive based representations. Refer to Table 3.7 for a summary of a number

of such principles that are dominant in the literature. Indeeed, experimental evidence sug-

gests that part like representations are perceived rapidly (Xu and Singh, 2002), are are readily

constructed from 2D silhouettes (De Winter and Wagemans, 2006), even for abstract shapes

and shapes that do not have any intuitive interpretation in terms of volumetric primitives.

Hoffman and Richards (1984) justify a geometric interpretation of part structure based on

the “transversality principle”, stating that the union of two 3D objects produces a concave

crease where the two objects intersect. The projection of the silhouette for this union re-

sults in curvature minima, which, according to the so called “minima rule” (Hoffman and

Richards, 1984) are the loci of a likely subdivision of an object into parts.

The minima rule provides likely candidate points for initiating a part segmentation,

but it does not provide a systematic “partitioning scheme” (Siddiqi and Kimia, 1995), that

determines how a shape should be decomposed. Many well-known approaches use cur-

vature minima to define “part-lines” or “cuts” (Papanelopoulos et al., 2019), that delimit

perceptually-distinct object parts. The “short-cut rule” (Singh et al., 1999) suggests that a

part-line should connect one or two m− points, that it should cross a local symmetry axis

(in terms of Brady’s SLS) and that shorter cuts and cuts connecting salient concavities (Singh

and Hoffman, 2001) are preferred. Siddiqi and Kimia (1995) identify part cuts with necks and

limbs. Necks coincide with a local minimum of the SAT radius, where a disk has contact with

a concavity. Limbs connect concavity pairs at which the boundary has good continuation.

Many part-cut based implementations exist, ranging from ones that adopt ideas from the

short-cut rule (Luo et al., 2015; Wang and Lai, 2016; Papanelopoulos et al., 2019) together

with additional principles such as convexity (Rosin, 2000; Liu et al., 2014; Papanelopoulos

et al., 2019).

De Winter and Wagemans (2006) perform another large scale study on human prefer-

ences for segmentation points among different types of curvature extrema and inflections.

The results confirm the minima rule by emphasising the perceptual importance of negative

minima (m−), which are the most frequently chosen features by participants (approx. 64%),

followed in decreasing order of importance by inflections, positive maxima (M+), negative

maxima (m+), and positive minima (M−) and with the likelihood of a choice being correlated

with the magnitude of curvature. Consistent with the minima and short-cut rules, partici-

pants show a preference for part cuts connecting two m− points, followed by ones connect-

3.8. From shape to strokes 91

ing at least one m− point. However, the short cut rule is sometimes overruled by a diagonal

cut that connects a nearby M+ (e.g. at an “elbow”-like form).

3.8.4.2 Skeleton based methods

Already in his early works, Blum suggested that symmetry axis branches could be useful to

categorise object parts, but also recognising that this part based representation may be re-

dundant. Blum and Nagel (1978) exemplify this redundancy with the symmetry axes of a

rectangle, which consists of one central axis and four smaller axes extending into corners.

However, the authors also show how these somewhat redundant axes can be used to describe

the rectangle having four corners, and how other SAT features characterise morphological

features such as “worms”, “wedges” and “flexures”.

Semi-ligatures and ligatures are symmetry axis segments where the maximal disks touch

the contour at points that are part of respectively one or two distinct curvature minima or

corners (Blum and Nagel, 1978; August et al., 1999). These tend to be symmetry axis seg-

ments that contribute to relatively small portions of the outline, but can act as “glue” that

connects segments of perceptually distinct outline parts (De Winter and Wagemans, 2006;

Macrini et al., 2008). Macrini et al. (2008) exploit ligatures and semi-ligatures to abstract and

decompose the SAT into a graph that describes parent-child relations among object parts

called “bones”. The method uses ligature analysis to categorise branching points into junc-

tions, which are classified as one of: Y-junctions, P-junctions (where “P” stands for protru-

sion), and nested-junctions (combinations of the previous two).

Rom and Medioni (1993) use axes of the SLS together with their cross sections (ribbons),

to decompose an outline into parts. The SLS is computed from a B-spline approximation

of the outline and the method also uses SLS axes to identify morphological features such as

“terminations” and “bends” as well as topological features such as “mushrooms” (“T”-like

features). Mi and DeCarlo (2007) also use the SLS to compute parts, and identify hyperbolic

regions along the outline that determine the decomposition of an object into parts and tran-

sition regions where parts smoothly blend. Feldman and Singh (2006) propose a Bayesian

interpretation of the skeleton, aimed at producing a more intuitive decomposition into parts

than the one produced by the SAT. Shape is seen as a stochastic process that grows the out-

line from the skeleton, and the skeleton is given by the maximum a posteriori (MAP) esti-

mate of the process parameters. Froyen et al. (2015) implement this concept by estimating

the parameters of a mixture of splines paired with Gaussian thickness profiles with a variant

of Bayesian Hierarchical Clustering (Heller and Ghahramani, 2005).

3.8.4.3 Overlapping parts and vectorisation

Very few methods consider the problem of potentially overlapping parts, which also pertains

to the tasks of decomposing glyphs or drawings into constituent strokes. With the aim of vec-

torisation, Luo et al. (2015) and more recently Kim et al. (2018) propose a data-driven method

92 Chapter 3. Background

that can vectorise overlapping parts of Chinese characters. The method of Froyen et al. (2015)

can disambiguate overlapping parts, but it is demonstrated only on relatively simple tubular

objects. Favreau et al. (2016) propose another approach that uses a Monte-Carlo exploration

method to create vectorisations of thin line drawings that maximise a tradeoff between sim-

plicity and reconstruction accuracy. The problem of disentangling potentially overlapping

parts also relates to multi-manifold learning (Arias-Castro et al., 2017; Goldberg et al., 2009;

Deutsch and Medioni, 2017), which is the segmentation of data samples generated by multi-

ple, potentially-intersecting manifolds. Massad and Medioni (2001) model contour integra-

tion with tensor voting and use the resulting tensor fields to identify junctions where parts of

an objects cross and overlap and to compute occluded contours. The authors demonstrate

results on simple letterforms.

3.9 Summary
To summarise, we have exposed a number of topics starting from curve generation and styli-

sation methods, going into a number of notions from the study of human movement, fol-

lowed by a review of existing approaches for the representation, stylisation and generation of

stylised strokes, typography, calligraphy and handwriting, and finishing up with a review of

shape representations, with a focus on ones that have a perceptual grounding.

The emphasis on human movement in Section 3.5 serves as a background in order to

explore the hypothesis that a movement centric and process based representation of shape is

fundamental for the study and procedural generation of graffiti, but more in general for the

study of any other art form. Quoting De Preester (2013, pg. 21):

"How a musical passage is played, how a monologue is delivered, how a piece of

fruit, a tree, or a person is delineated and shaded on canvas, how a dance ensem-

ble spreads apart and gathers together – all such artistic realities depend on the

living movement dynamics of the artists creating or performing the work...".

Surprisingly, both in Western art-theoretical literature (Fong, 2003) as well as in the com-

puter graphics domain (Kyprianidis et al., 2013), the notion of movement in the study of

artistic styles is seldom taken into account. While dynamic models of movement are central

in the handwriting-synthesis and graphonomics domains (Section 3.5.3), such representa-

tions are rarely used in more art/style centric generative applications, with the exceptions of

a number of methods aimed at generating synthetic calligraphy (Shinoda et al., 2003; Wang

et al., 2005; Fujioka et al., 2006; Fujioka and Miyata, 2011) or mimicking hand-drawm images

(AlMeraj et al., 2009; House and Singh, 2007). In Chapter 4 and Chapter 5 we will develop

two calligraphic stylisation methods that systematically take into account a number of the

principles discussed in Section 3.5 to produce trajectories that resemble the ones that would

be made by an expert graffiti artist. These methods are also aimed at addressing a number of

3.9. Summary 93

limitations that we have encountered in Section 3.3, when it comes to specifying and editing

calligraphic curves with geometry-based curve manipulation methods.

In Section 3.6 we have seen some useful letterform descriptors with a focus on stroke-

based representations. These descriptors are the basis for the representation that will be

used in Chapter 10 to recover strokes and their connectivity relations from gylph outlines.

The emphasis on strokes is based on commonly held notions in typography and calligraphy

(Noordzij, 2005; Wang, 2013), but also on results (Section 3.6.2, Section 3.7.2) that demon-

strate the power and flexibility of this representation and finally motivated by its compati-

bility nwith the proposed movement centric approach to curve generation. We have con-

cluded that there is no stroke representation in the literature that robustly supports effects

that are typically seen in graffiti pieces, such as self overlaps and local layering. We will ad-

dress this gap in Chapter 6 with a variant of skeletal strokes specifically design to reproduce

graffiti and compatible with a movement centric approach to curve generation. A survey of

font,calligraphy and handwriting generation methods (Section 3.7) reveals that many meth-

ods rely on recovering stroke-based representations from font outlines (Table 3.4), but none

of these methods is general enough to operate on fonts with arbitary languages, styles or

writing systems.

The emphasis on shape in Section 3.8 serves as a background for the development of a

solution to this gap in Chapter 10, and more in general as a foundation for all the methods

developed in Part II of the thesis. A number of these topics, in particular the ideas of Michael

Leyton (Leyton, 1987, 1988) and an understanding of symmetry based shape descriptors,

will inform the development of curvilinear shape features in Chapter 7, a shape represen-

tation that we will use to recover movement primitives (Chapter 8) and strokes (Chapter 10)

from existing geometry. The first procedure will serve as a basis to develop, in Chapter 9, a

kinematics-based analogue of an example-based approach to curve stylisation that is popu-

lar in the literature (Hertzmann et al., 2002; Li et al., 2013; Lang and Alexa, 2015). The second

procedure will allow us to recover letter structures from fonts, which ultimately guides the

proposed graffiti generation and stylisation framework (Chapter 11).

Part I

Part I - Kinematic and geometric

primitives for interactive graffiti art

generation

95

Chapter 4

Calligraphic stylisation:

the Sigma-Lognormal model

This chapter is based on work initially developed independently and resulting in two pub-

lications (Berio et al., 2016; Berio and Leymarie, 2015), and then in collaboration and with

the additional advice of Professor Réjean Plamondon at Polytechnique Montréal (Berio et al.,

2017d,a, 2018b,a). .

In the next two chapters, we will explore two methods that instantiate the previously

discussed ideas of kinematic curve design and calligraphic stylisation. In this chapter, we fo-

cus on the field of graphonomics (Kao et al., 1986) and in particular on the Sigma Lognormal

(ΣΛ) model. On the basis of the Kinematic Theory (Plamondon, 1995), the ΣΛ model (Leiva

et al., 2017) is a physiologically plausible model of handwriting which describes the kinemat-

ics of arbitrarily complex pen movements through the superposition of a sequence of target

directed (ballistic) sub-movements, which are characterised by a lognormal speed profile.

Plamondon suggests that the theory is aimed at describing the motions of “humans that

are in perfect control of their movements” (Plamondon et al., 2013), which he refers to as the

lognormality principle, where with experience/practice, the velocity profile of a hand move-

ment tends to converges towards a sum of lognormal functions. This concept fits well with

the notion that tagging/drawing movements and forms of graffiti tags and calligraphy result

from extensive years of practice, and with the hypothesis that the experienced artist, after

years of practice, will be capable of synthesising effortlessly (without thinking) aesthetically

pleasing and distinct traces. As a result, graffiti can be seen in the context of the Kinematic

Theory as one possible artistic instantiation of the lognormality principle.

From a motor control perspective, lognormals have been experimentally shown to be

accurate descriptors of human movement speed profiles (Rohrer and Hogan, 2006), and the

98 Chapter 4. Calligraphic stylisation: the Sigma-Lognormal model

ΣΛmodel produces kinematics that are similar to the ones that would be produced by a hu-

man while drawing or writing. The model is originally conceived for the analysis and synthe-

sis of handwriting for pattern-recognition and biometric purposes. However, we will show

how, through an appropriate re-parameterisation, such a framework can be used in simili-

tude to established popular spline-based methods, with the additional benefit of capturing

both the geometry and dynamics of a human made trace with a single integrated representa-

tion. This results in a system where trajectories that resemble the ones made with a freehand

movement are specified and edited with a sparse motor plan, rather than a sketch-based in-

put and interface.

The following sections describe three variations of the Sigma Lognormal (ΣΛ) model

(Plamondon et al., 2014) developed in the context of this thesis: the ΣΛmodel in its original

formulation (Section 4.1) followed by two extensions: the Weighted ΣΛ (Section 4.2.1) and

the Spiral ΣΛ (Section 4.2.2) models. These two extensions are particularly aimed at interac-

tive CAGD applications, and their uses and advantages for the interactive generation (Section

4.3), variation (Section 4.4) and rendering (Section 4.5) of strokes are discussed last.

4.1 Sigma Lognormal Model
The Kinematic Theory of Rapid Human Movements (Plamondon, 1995), together with its

derived models, abstracts the complexity of the neural and muscular processes underlying

human movement formation with a “black box” model, consisting of a large number of hier-

archically coupled linear sub-systems. Plamondon et al. (2003) show that as the number of

sub-systems grows, the impulse response of such a system to a centrally generated command

converges to a lognormal (eq. 4.1), which accurately describes the variably asymmetric bell

shape that commonly characterises the velocity of human target directed movements (Pla-

mondon et al., 1993; Rohrer and Hogan, 2003). The velocity of the resulting movement is

modelled with a time shifted lognormal function: 1

Λ(t) = 1

σ
p

2π(t − t0)
exp

(
− (ln(t − t0)−µ)2

2σ2

)
, (4.1)

where t0 is the activation time of a centrally generated command (e.g. by the central nervous

system or CNS), and the parametersµ andσmodel the delay and response time of the system

to the command in a natural-logarithmic time scale, while also determining the asymmetry

and support of the lognormal.

With the specific objective of modeling handwriting movements, the ΣΛ model de-

scribes arbitrarily complex movement trajectories with the space-time superposition of a

discrete number of lognormal sub-movements. Each such sub-movement is aimed at an

1In statistics, this is more commonly referred to as the 3 parameter lognormal. Note that in the Kinematic Theory,
the function describes an impulse response, not a probability density function.

4.1. Sigma Lognormal Model 99

p1

p2

p3

(a)

t

sp
e
e
d

(b)

t

sp
e
e
d

Figure 4.1: The effect of different time overlaps for two lognormals. The activation of the second log-
normal in (b) is anticipated with respect to (a). The resulting trajectories are displayed in
black, with a red shade indicating the region in which the cumulative influence of both sub-
movements is highest. The red circles are the initial position (p0) and two virtual targets
(p1, p2). Note that these positions define a motor plan (dashed red).

imaginary location referred to as virtual target. The velocity of each sub-movement is de-

termined by a lognormal Λ(t)i , which is computed according to Eqn. 4.1 and with t0,µi ,σi

its activation time, delay and response time. Intuitively, initiating a lognormal Λ(t)i for

one sub-movement while the lognormal Λ(t)i−1 for another sub-movement is still being ex-

ecuted, results in a superposition that produces a smooth trajectory that combines the two.

Anticipating the activation time for Λ(t)i−1 increases the time overlap between lognormals

and results in a smoother trajectory (Figure 4.1).

With the assumption that handwriting movements are executed with rotations of the

elbow or wrist, the ΣΛ model describes the geometry of a sub-movement with an oriented

circular arc, the curvilinear evolution of which is computed from the integral of equation

(4.1):

wi (t) =
∫t

0
Λi (u)du = 1

2

[
1+erf

(
log(t − t0i)−µi

σi
�

2

)]
, (4.2)

giving the curvilinear evolution function

φi (t) = θi −
δi

2
+δi w(t) , (4.3)

100 Chapter 4. Calligraphic stylisation: the Sigma-Lognormal model

\8 X8

such that θi is an orientation parameters that determines the angle

that a sub-movement makes with the horizontal axis and δi is a cur-

vature parameter that determines the internal angle of the assumed

circular arc (see inset on the left for an illustration). The planar pen-

tip velocity for a trajectory is then calculated with the vectorial su-

perposition of M sub-movements:

ẋ =
M∑

i=1
DiΛi (t)


cos(φi (t))

sin(φi (t))


 , (4.4)

where Di is an amplitude determining the distance covered by each sub-movement. A planar

trajectory can be generated by integrating equation (4.4) starting from an initial position po

with:

x(t) = p0 +
∫t

0
ẋ(u)du (4.5)

Displacement based solution. Exploiting the closed form integral in equation (4.2) allows to

efficiently compute the trajectory in terms of a sum of displacements si (t), with:

x(t) = p0 +
∫t

0
ẋdu = p0 +

M∑
i=1

∫t

0
Di

d

du
wi (u)


cos(φi (u))

sin(φi (u))


du = p0 +

M∑
i=1

si (t) ,

where

si (t) = Di

δi




(
sin

(
φi (t)

)− sin(θi −δi /2)
)

(
cos

(
φi (t)

)−cos(θi −δi /2)
)

 if |δi | > 0 ,

and si (t) = Di


wi (t)cosθi

wi (t)sinθi


 otherwise.

This allows to efficiently compute the pen tip position at a given time t in parametric form

by exploiting the error function (erf), which is implemented in most programming languages

and numerical packages and avoids the need for numerical integration.2

2This parameterisation was derived independently in the context of this thesis, during the development of the
weighted ΣΛ model. However, it has also been previously proposed by O’Reilly and Plamondon (2009) so it is now
described as part of the original model formulation.

4.2. ΣΛmodel for calligraphic stylisation 101

Curvature. The acceleration components of the lognormal trajectory are then given by (Pla-

mondon and Guerfali, 1998a):

ẍ =
N∑

i=1
Di Λ̇i (t)cos(φi (t))−DiδiΛ

2
i (t)sin(φi (t)) , (4.6)

ÿ =
N∑

i=1
Di Λ̇i (t)sin(φi (t))+DiδiΛ

2
i (t)cos(φi (t)) , (4.7)

with

Λ̇i (t) =Λi (t)
µi −σ2

i − log(t − t0i)

σ2(t − t0i)
, (4.8)

which allows us to compute the curvature function at time t with Eqn. 2.1.

4.2 ΣΛmodel for calligraphic stylisation

The conventional ΣΛmodel definition above, implicitly defines a motor plan P consisting of

an initial position p0, followed by M targets p1 . . . p M at which consecutive sub-movements

are aimed. However such a definition suffers from poor locality and is not well suited for our

tasks of interactive editing and calligraphic stylisation. As an example, changing a curvature

parameter δi for one sub-movement, modifies the location of all consecutive virtual targets

and the corresponding trajectory segments. For our use case, we seek instead a parameter-

isation that clearly separates the definition of a motor plan from a set of parameters that

determine its kinematic realisations. To this end, we develop two variants of the ΣΛmodel:

The weighted Sigma Lognormal (ωΣΛ) model and the weighted Euler spiral Sigma Lognor-

mal (ωEΣΛ) model. The first variant is a simple reformulation of the model with an explicitly

defined motor plan. The second variant, is an extension of the first that allows for more

complex sub-movement primitives than circular arcs. Finally, we describe an intermediate

parameterisation of t0i ,µi ,σi that is specifically aimed at the stylisation and interaction use

cases.

4.2.1 The weighted Sigma Lognormal (ωΣΛ) model

We define a weighted parameterisation of the model by computing the amplitude and

orientation parameters Di and θi from an explicitly defined motor plan with vertices

p0, p1, . . . , p M , which defines the initial position p0 followed by M virtual targets (Figure 4.2).

The parameters θi are given by the orientations of the vectors p i −p i−1 connecting con-

secutive targets. The sub-movement amplitudes are given by

Di =

δi ∥p i−p i−1∥

2sin(δi /2) if |δi | > 0 ,

∥ p i −p i−1 ∥ otherwise ,
(4.9)

102 Chapter 4. Calligraphic stylisation: the Sigma-Lognormal model

ppp0

ppp1

ppp2
ppp3

Arcs
Virtual targets
Trajectory

0.0 0.1 0.2 0.3 0.4

t

0

250

500

750

1000

1250

1500

sp
ee
d
(c
m
/s
ec
)

Speed
Lognormals

Figure 4.2: Left: ΣΛ trajectory (in black) with the corresponding motor plan visualised as targets (red
dots) connected by circular arcs (dashed red) rather than straight line segments.. Right: The
corresponding speed profile with different time overlaps between lognormals.

which adjusts the command amplitude depending on the distance to a virtual target and on

the ratio between the perimeter and the chord length of the corresponding circular arc .

This reparameterisation results in a clear separation between the motor plan P and a set

of kinematic parameters (the remaining ΣΛ parameters), which determine the fine evolution

of a trajectory that follows the motor plan, that is its kinematic realisation P . Note that for

the case of the ΣΛ and ωΣΛ models, we will visualise motor plans with vertices connected

by circular arcs, rather than straight line segments (Figure 4.2). This is done with the pur-

pose of visualising the geometry of each sub-movement, while avoiding clutter in the figures.

However, the motor plan remains a sequence of vertices connected by polylines and the kine-

matic parameters δi that determine the arc geometry should not be considered part of the

motor plan’s definition. In the next section, we will use a similar visualisation approach for

sub-movements consisting of geometric primitives other than circular arcs.

4.2.2 The Weighted Euler Spiral Sigma Lognormal (ωEΣΛ) Model

The ΣΛ formulation is flexible enough to accommodate for movement primitives with ge-

ometries other than straight or circular arcs. With the use case of interactive curve editing,

we can extend the weighted ΣΛ model with primitives consisting of Euler spiral segments.

Euler spirals (Levien, 2008) (a.k.a. Cornu spirals, or clothoids or spiros) are curves in

which curvature varies linearly with arc length, permitting the description of variably curved

segments that may contain an inflection. At the expense of adding a supplementary param-

eter per sub-movement to the model, the use of Euler spirals reduces the number of virtual

targets needed to define a trajectory — such as when defining a doubly looping eight (“8”)

(Berio and Leymarie, 2015) — and provides an additional level of editing flexibility. The re-

sulting method can also be used to define trajectories that are identical to the standard ΣΛ

model, since in the limit an Euler spiral segment converges to a circular arc (Walton and

4.2. ΣΛmodel for calligraphic stylisation 103

Meek, 2008).

The coordinates of an Euler spiral for a given arc length parameter s can be retrieved

with the cosine (C (s)) and sine (S(s)) Fresnel integrals (Levien, 2009a) :

C (s) =
∫ s

0
cos

(
u2)du and S(s) =

∫ s

0
sin

(
u2)du , (4.10)

which can be efficiently approximated with a numerical method described by Heald (1985).

Figure 4.3: Examples of Euler spiral sub-movements using different Hermite constraints (in red).

The curvilinear evolution of each sub-movement is determined by two arc length val-

ues s0i and s1i which, although they are not intuitive to grasp, can be uniquely computed

given the orientation of two tangents (a.k.a. Hermite constraints) with respect to the chord

of the spiral (Figure 4.3). A number of methods exist for this task (Kimia et al., 2003; Walton

and Meek, 2008; Levien, 2009a; Bertolazzi and Frego, 2013); in this thesis we use the secant

method proposed by Levien (2009a), which has experimentally proven to be fast and robust.

We then define the arc length evolution of the spiral for each sub-movement with:

φsi (t) = s0i + (s1i − s0i)wi (t) (4.11)

and the integrated displacement of each sub-movement with:

d i (t) = Di

li

(C (φsi (t))−C (s0i))cos(θi −θci)−S(hiφsi (t))−S(hi s0i))cos(θi −θci)

(C (φsi (t))−C (s0i))sin(θi −θci)+S(hiφsi (t))−S(hi s0i))cos(θi −θci)

 , (4.12)

where

li =
√

(C (s1i)−C (s0i))2 + (S(s1i)−S(s0i))2 and θci = tan−1
(

S(s1i)−S(s0i)

C (s1i)−C (s0i)

)
(4.13)

are used to respectively correct for the chord length and orientation of the spiral in its canon-

ical form, and where

hi = sgn

(
s3

1i

2|s1i |
− s3

0i

2|s0i |

)
(4.14)

takes care of flipping the spiral along the horizontal axis depending on its curvature and thus

104 Chapter 4. Calligraphic stylisation: the Sigma-Lognormal model

allows to capture different combinations of user defined Hermite constraints.

4.2.3 Lognormal timing reparameterisations

While the lognormal function works remarkably well in describing the form of human move-

ment speed profiles (Rohrer and Hogan, 2006), its parameters do not have an intuitive cor-

relation with its mode and shape (Mandelbrot, 1997). For example, with the standard log-

normal parameterisation, the variation of µ shifts the onset time of the lognormal (Figure

4.4).

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
t

0

2

4

6

8

Ac = 0.005 μ = 0.16 σ = 0.07
Ac = 0.033 μ = − 0.84 σ = 0.18
Ac = 0.067 μ = − 1.25 σ = 0.26
Ac = 0.100 μ = − 1.51 σ = 0.32
Ac = 0.133 μ = − 1.72 σ = 0.38
Ac = 0.167 μ = − 1.89 σ = 0.43
Ac = 0.200 μ = − 2.05 σ = 0.47
Ac = 0.233 μ = − 2.19 σ = 0.52
Ac = 0.267 μ = − 2.33 σ = 0.56
Ac = 0.300 μ = − 2.46 σ = 0.60
G aussian

Figure 4.4: Lognormals for different values of Aci with Ti = 0. As Aci → 0 the lognormal converges to a
Gaussian. An example Gaussian centered at the mode of the lognormal with Ac = 0.005 is
shown in dashed blue for comparison.

A precise specification of timing and profile shape of each sub-movement can be facili-

tated with an intermediate parameterisation that takes advantage of a few known properties

of the lognormal (Djioua and Plamondon, 2008b). Each sub-movement can be reparame-

terised with: (i) a sub-movement duration Ti , (ii) a relative time offset ∆ti with respect to

the previous sub-movement time occurrence and duration, and (iii) a shape parameter Aci

∈ (0,1), which defines the skewedness of the lognormal (Plamondon et al., 2003). The ΣΛ

parameters
{
µi ,σi

}
can be then computed with:

σi =
√
− log(1− Aci), µi = 3σi − log(

−1+e6σi

Ti
) (4.15)

4.3. User interaction 105

As Aci approaches 0, the shape of the lognormal converges to a Gaussian (Figure 4.4), with

mean t0i +eµi−σ2
i (the mode of the corresponding lognormal) and standard deviation Ti

6 .

The activation times are computed from the relative time offsets and are given by:

t0i = t0i−1 +∆ti sinh(3σi) , (4.16)

with i > 1 and t01 = 0. The parameter ∆ti then intuitively determines the smoothness of

the trajectory similarly to weights in NURBS curves; smaller values increase the lognormal

overlap and consequently produce a smoother trajectory in the vicinity of the virtual target

(Figure 4.1).

Notes on the biological interpretation of the ΣΛ parameters. The proposed parameteri-

sation is convenient for the generative or interactive specification of trajectories, in which it

may be useful to precisely define the time occurrence and the duration of a sub-movement.

However, this comes at the cost of a biologically plausible interpretation of the parameters.

First, we explicitly determine the duration of a sub-movement (Ti) which is biologically ques-

tionable (Harris and Wolpert, 1998). Second, an examination of Figure 4.4 raises questions

on the interpretation of the parameter t0i as the activation time of a sub-movement at the

CNS level. In fact, as Aci → 0 and the lognormal becomes more symmetric, its mode3 and

onset tend to infinity. At the same time, it is known to be possible for the speed profiles of

human movements to assume a nearly symmetric or negatively skewed shape (Flash and

Hogan, 1985; Nagasaki, 1989; Engelbrecht, 2001).

One method to address the symmetry issue is to use a different, support-bounded for-

mulation of the lognormal, which has been previously proposed by Plamondon (1993) as an

alternative to Eqn. 4.1. This formulation requires an additional parameter, but also permits

negatively skewed or symmetric speed profiles without incurring the previous time delay is-

sue. However, the parameterisation also assumes a predetermined movement duration. An-

other approach is to use the more sophisticated Delta Lognormal model, which describes

each aiming (sub)movement with the sum of one agonist and one antagonist lognormal, and

also enables both negatively skewed or nearly symmetric speed profiles. While these are in-

teresting avenues of future research, the issues raised above can be considered negligible

when considering our use case, which requires generating biologically plausible kinematics

but not necessarily an accurate modelisation of all the main features of the human trajectory

formation process.

4.3 User interaction
The ωΣΛ and ωEΣΛmodels provide flexible trajectory generation tools that are particularly

well suited for interactive (point and click) editing procedures. For example, the user can

3Note that the peak of the lognormal is located at the mode, rather than at the mean.

106 Chapter 4. Calligraphic stylisation: the Sigma-Lognormal model

easily edit the spatial evolution of the trajectory by dragging virtual targets, and modify the

sub-movement shapes and timing properties by manipulating handles placed in correspon-

dence with motor plan vertices.

The resulting user interface (UI) is very similar to the ones used in traditional methods

such as based on Bézier curves. However, the proposed method also facilitates the dynamic

production of curves used in art forms such as calligraphy or graffiti. Targets are located in

proximity of curvature extrema along the generated trajectory, which are known to be highly

informative (Attneave, 1954) and perceptually salient (De Winter and Wagemans, 2008b), and

prove good candidates for the interactive definition of curves (Levien and Séquin, 2009; Yan

et al., 2017). At the same time the user is effectively editing a plan for an intended motion with

a representation that reflects the concatenation of a series of simple reaching/aiming move-

ments. Such a target mapping is consistent with the hypothesis of an abstract end effector

independent representation of movements in the brain (Ferrer et al., 2015).

Circular arc interaction. For the case of the ωΣΛ model, all targets with the exception of

the last are associated with a handle originating at the target locus. The angle between the

handle and the segment connecting the consecutive target is δi /2 and determines the arc in-

ternal angle. The length of the handle is inversely proportional to∆ti and determines overlap

between lognormals. A longer handle results in a smaller value of ∆ti and in an accordingly

smoother trajectory in the vicinity of the target (Figure 4.5a). A user can click to create a new

target point, resulting in a new initially straight sub-movement with default values of δi = 0

and ∆ti = 0.5, resulting in an average overlap between adjacent sub-movements.

Euler spiral interaction. For the case of theωEΣΛ, we add two handles for each motor plan

segment, originating at each segment endpoint (Figure 4.5b). The orientations of the han-

dles with respect to the segment determine the tangents that are used to compute the Euler

spiral parameters s0i , s1i with the method by Levien (2009b). The length of the first handle

determines the time overlap parameter ∆ti similarly to the circular arc case.

4.4 Kinematic variability and stylisation
The ΣΛmodel directly reflects the characteristics of a smooth human movement at the plan-

ning (targets and motor plan) and neuromotor level (the remaining parameters). We there-

fore expect and observe that parameter perturbations result in variations of a trace that are

similar to the one that would be seen in multiple instances of handwriting or drawing made

by one or more subjects (Figure 4.6). The variability produced by the ΣΛ model is not a by-

product of a set of instances, computed afterward, but is rather intrinsically built in the ab-

stract representation of a pattern. In previous works, this property of the ΣΛmodel has been

exploited to produce artificial data for handwriting recognisers (Fischer et al., 2014), signa-

ture verifiers (Galbally et al., 2012; Diaz-Cabrera et al., 2018), gesture graphical input (Leiva

et al., 2016, 2017). As we shall see the same property can also be exploited for the more artis-

4.4. Kinematic variability and stylisation 107

(a)

(b)

Figure 4.5: Example UI for editing ΣΛ trajectories, with speed profiles for each trajectory shown in
cyan below. (a) ωΣΛ model with circular arc primitives. Left: default configuration when
user adds new targets. Right: trajectory after some manipulations. Each motor plan ver-
tex, with the exception of the last, has a handle (grey segment terminating in a blue dot)
that can be dragged to control the values of the sub-movement time overlap and curvature
parameters ∆ti and δi .The length of the handles (defined with a blue dot) is inversely pro-
portional to the value of ∆ti and the angle of the handle with respect to the vector between
two consecutive targets is = δi /2. (b) ωEΣΛmodel with Euler spiral primitives. In this case,
the geometry of each primitive is determined by two handles originating at the endpoints
of each motor plan segment. The spiral parameters are determined by the angles made by
the handles with the motor plan segment. The examples show how rotating the handle
(emphasised in red) transforms the trajectory on the left into the one on the right, resulting
in a sub-movement that contains an inflection.

tically oriented procedural generation and stylisation applications.

4.4.1 Artificial variability

The proposed intermediateΣΛ parameterisation is useful in an interactive setting, but it also

facilitates the generation of artificial variations of an input trajectory. In fact, applying pertur-

bations at the level of the parameters ∆ti and δi and to the explicitly defined target positions

p i , avoids issues with error propagation when considering the model in its original formula-

tion (Plamondon et al., 2014).

108 Chapter 4. Calligraphic stylisation: the Sigma-Lognormal model

Figure 4.6: Target structure of a letter "a" (top left) and kinematic variations of its trace generated by
perturbing ΣΛ parameters.

In our experiments, when perturbing targets, we have found that applying the perturba-

tion with a variance inversely proportional to the temporal overlap parameters ∆ti improves

the legibility of the variations (Figure 4.6). This corresponds to imposing a higher precision

requirement at trajectory locations with higher curvature, locations that are known to be the

most informative of a trace/contour (Feldman and Singh, 2005). From a motor control per-

spective, this in effect is consistent with the “minimal intervention principle” (Todorov, 2004),

suggesting that human movement variability is higher where it does not interfere with the

performance required for a task.

More specifically, we adjust the virtual targets with:

p i ← p i +∆t−1
i εp

where εp ∼ N
(
0,σp s̄I

)
is normally distributed with σp a user configurable variance , s̄ is

the average distance between virtual targets and ∆t−1
i modulates the perturbation so it is

inversely proportional to the time offset parameter ∆ti . The kinematic parameters δi and

∆ti are perturbed with

δi ← δi εδ and ∆ti ←∆ti ε∆

where εδ ∼N (1,σδ), ε∆ ∼N (1,σ∆t) and where σδ and σ∆t determine the variance of δi and

∆ti respectively.

4.4.2 Stylistic variations

By construction, the ΣΛ model with the proposed weighted parameterisation instantiates a

bi-level representation that is compatible with the previously introduced concept of “style

as kinematics”. The target positions describe a motor plan, providing a sparse structural de-

scriptor of a family of traces (Figure 4.7a). The remaining ΣΛ parameters determine the pa-

rameter space describing this family of traces (Figure 4.7b). While a user can always adjust

4.4. Kinematic variability and stylisation 109

the parameters of one or more ΣΛ primitives interactively, for the task of stylisation we seek

to produce stylistic variations over a given motor plan that are applied consistently across

one or more trajectories.

(a) (b)

(c) (d)

Figure 4.7: (a) Motor plan for a tag “PRE” and (b) a trajectory generated with user defined ΣΛ parame-
ters. (c) Globally scaling all ∆ti parameters by a factor of 0.65 results in a smoothing effect.
(d) A lower scaling factor of 0.4 results in most of the recognizable structure of the pattern
being lost.

A trivial method to generate stylistic variations is to simply scale the∆ti parameters (Fig-

ure 4.7c). However, this quickly produces a degradation of the trace (similarly to the smooth-

ing effect of a convolution) and for certain instances of letterforms will result in a loss of

structure and legibility (Figure 4.7d).

4.4.2.1 Key-point adjustment

One method to overcome this limitation is to adjust the motor plan so the trajectory follows

the structure of the original motor plan more closely, even when lognormal primitives have

a large degree of overlap. To do so, we identify a series of M −1 key-points {τi }M−1
i=1 , locations

that approximately correspond to curvature extrema along the generated trajectory and in-

dicating the time occurrence at which the influence of one lognormal exceeds the previous

one (Figure 4.8a). The time occurrence of each key-point is computed at the intersection of

the scaled profiles of consecutive primitive pairs by solving:

DiΛ(t)i −Di+1Λ(t)i+1 = 0 ,

110 Chapter 4. Calligraphic stylisation: the Sigma-Lognormal model

(b)

(a)

(c) (d)

Figure 4.8: Key-point adjustment. (a) Key-points (orange circles) overlaid on the trace (left) and speed
profile (right) of a trajectory generated with two lognormal primitives. (b) The adjustment
vectors (red arrows) go from the key-points to the virtual target. These are scaled by λp =
0.7 (blue arrows) and applied to the virtual targets. (c) Result of one adjustment step. (d)
Result of a second adjustment steps, after re-computing the key-points from the previous
configuration.

with a few iterations of a Newton scheme.

The adjusted trajectory is computed with a new sequence of virtual target positions p̂ i

such that the locations of the corresponding key-points x(τi) in the resulting trajectory ap-

proach the originally specified virtual targets p i (Figure 4.8b). We first let p̂ i = p i and then,

for a user specified number of iterations, we adjust the new virtual target positions with:

p̂ i ← p̂ i +λp (p i −x(τi)) . (4.17)

In practice, a small number of iterations prove sufficient and the procedure runs in real-time

(Figure 4.8c, d) since each step only requires computing the trajectory at M − 1 key-point

locations. This allows a user to interactively determine the desired amount of adjustment

by setting the number of iterations and the parameter λp . As an example of this procedure,

Figure 4.9 demonstrates how a few adjustment steps can be used to address the issue with

parameter scaling that was observed in Figure 4.7d. This same procedure is also useful when

4.5. Stroke generation and animation 111

Figure 4.9: Key-point adjustment for ∆ti parameters scaled by a factor of 0.4. From left to right, the
unadjusted trajectories followed by three key-point adjustment steps with λp = 0.7.

combined with a UI, since it forces the curvature extrema of the trajectory to be closer to the

virtual targets, resulting in a behavior that is closer to an interpolation.

4.4.2.2 Parameter exaggeration

More sophisticated stylisation results can be achieved by exploiting the ΣΛ parameter struc-

ture to perform an “exaggeration” of the kinematic features with a procedure inspired by the

work of Brennan (1985), who extrapolates facial features from an average to generate cari-

catures. We accentuate deviations of the time-overlap ∆ti and curvature δ parameters from

their respective mean values ∆̄t , δ̄ with

∆ti ←∆ti +k∆t
(
∆ti − ∆̄t

)
(4.18)

δi ← δi +kδ
(
δi − δ̄

)
(4.19)

where positive values of the parameters k∆t ,kδ exaggerate differences of ∆ti ,δi from their

respective means, while negative values decrease the differences, and null values leave the

parameters unaffected (Figure 4.10).

4.5 Stroke generation and animation
One of the advantages of generating curves through the simulation of a movement is that

the smooth kinematics can be exploited to drive the implementation of expressive rendering

methods. For example, in prior work the same type of handwriting model has been exploited

to generate realistic renditions of signature pen traces (Ferrer et al., 2015) using an ink de-

position model (Franke and Rose, 2004). The brush model that follows, is aimed at achiev-

ing various effects that are evocative of instances of ink-calligraphy and graffiti made with

markers or spray paint by exploiting the kinematics captured by the ΣΛmodel. The method

builds upon the assumption that the amount of paint deposited is inversely proportional to

the speed of the drawing tool (Figure 4.11). This model is simple while providing visually ap-

pealing patterns which are approximately similar to the ones produced with physically more

accurate but also more complex models of a brush or pen.

In order to generate a variably smooth brush texture, we use once more the error func-

112 Chapter 4. Calligraphic stylisation: the Sigma-Lognormal model

(a) (b) (c)

(d) (e) (f)

Figure 4.10: Parameter exaggeration. (a) no exaggeration. (b) kδ = 0.0,k∆t = 2. (c) kδ = 0.0,k∆t = 2.
(d) kδ = 0.5,k∆t = 0. (e) kδ =−0.5,k∆t = 0. (f) Combination of ∆ti scaled by a factor of 0.5
and exaggeration with kδ = 0.5,k∆t = 0.3.

Figure 4.11: Kinematics-based brush rendering of ΣΛ trajectories: the corresponding motor plan (in
red on the left) and renderings with different kinematic dependent brushes.

tion to obtain a “hat” curve (Figure 4.12a) with the following equation:

φb(x) = 1

2
+ 1

2
erf[αb (1−x)] , (4.20)

−1.0 −0.5 0.0 0.5 1.0
d

0.00

0.25

0.50

0.75

1.00

in
te

ns
ity

(a)

−1.0 −0.5 0.0 0.5 1.0
d

(b)
αb = 2.0
αb = 2.75
αb = 3.5
αb = 4.25
αb = 5.0

hb = 0.0
hb = 0.25
hb = 0.5
hb = 0.75
hb = 1.0

Figure 4.12: “Hat” functions for brush generation with different parameters. (a) single curve. (b) com-
bination of two curves resulting in a decrease of intensity near the brush center.

4.5. Stroke generation and animation 113

where the parameter αb determines the top hat flatness of the curve.

To mimic the effects of certain spray nozzles or marker nibs that diffuse less paint near

center we compute the curve with φb(x)∗ (1−obφb(2x)) with ob a user configurable param-

eter that is inversely proportional to the brush intensity near its center (Figure 4.12b). A vari-

ably sized and rotated 2D brush texture is produced by using the hat curve with normalised

coordinates (u, v) ∈ [0,1] to obtain the distance to a superellipse with√∣∣∣∣u cosθb − v sinθb

wb

∣∣∣∣βb

+
∣∣∣∣u sinθb + v cosθb

hb

∣∣∣∣βb

, (4.21)

where θb determines the brush rotation and wb ,hb ,βb respectively determine the relative

width and height of the brush and the shape of the superellipse. Figure 4.13 shows different

examples of brush textures with the corresponding parameters.

wb = 1.00
hb = 1.00
θb = 0.0
βb = 2.0
αb = 10.0
ob = 0.00

wb = 1.00
hb = 0.50
θb = − 0.5
βb = 8.0
αb = 2.0
ob = 0.00

wb = 1.00
hb = 0.50
θb = 0.8
βb = 4.0
αb = 10.0
ob = 0.00

wb = 1.00
hb = 1.00
θb = 0.0
βb = 2.0
αb = 10.0
ob = 0.90

wb = 1.00
hb = 0.50
θb = − 0.5
βb = 8.0
αb = 2.0
ob = 0.90

wb = 1.00
hb = 0.50
θb = 0.8
βb = 4.0
αb = 10.0
ob = 0.90

Figure 4.13: Different brush textures, with the corresponding parameters and an example trajectory

We further use the traditional “dabbing” a.k.a. “stamping” procedure to sweep the brush

along the trajectory and scale its size as an inverse function of speed:

r (t) = rmin + (rmax − rmin)exp

(
− v̄ + ∣∣ṗ(t)

∣∣
v̄

)
(4.22)

i.e. scaled by the mean of the speed for the whole trajectory, v̄ (Figure 4.14). The brush size

is varied within a range [rmi n ,rmax], which allows to adjust the amount of speed dependent

scaling in the generated image. The speed
∣∣ṗ(t)

∣∣ can be exactly computed by using the origi-

nal form of theΣΛmodel (Plamondon et al., 2014) or approximated by computing by forward

114 Chapter 4. Calligraphic stylisation: the Sigma-Lognormal model

Figure 4.14: Dabbing a brush as a function of speed (top right) with a variable width (bottom right).

Figure 4.15: Lognormal drips. Left to right: Three variations of a drip generated with thickness deter-
mined by a lognormal (blue profile) with respective shape parameters Ac = (0.1,0.25,0.5),
followed by a swept stroke rendering of a letter “R” with drips.

differencing the trajectory x(t) which proves faster and sufficiently accurate for this applica-

tion.

Drips With the similar assumption that slower movements produce a higher deposition of

ink/paint, we can add a random drip effect where the speed is under a user defined threshold

(Figure 4.15). This mimics a feature that can often be seen in instances of tags made with an

ink marker or spray paint. We use a purely visual trick to mimic the appearance of a drip

running down a surface, where we determine the thickness of the drip using equation (4.22)

with the speed profile provided by a single lognormal.

Animation and Fabrication The physiologically plausible kinematics produced by the ΣΛ

model can also be exploited to easily produce natural looking stroke animations of a tra-

jectory. This is achieved by incrementally sweeping a brush texture along a uniform-time

sampling of the trajectory, since the distance between samples reflects the smooth kinemat-

ics generated by the model. The same technique can be exploited to produce smooth motion

paths for virtual (human) characters, or for fabrication, or robotic devices (Figure 4.16) (Berio

et al., 2016).

4.6. Conclusion 115

-100

-50

0

50

100

100

150

200

x 3

250

200

300

400

x2

500

600

700

x1

1000900800700600800 500400300200

Figure 4.16: Left: A compliant robot reproducing a tag created with the ΣΛ model. Right: Correspond-
ing trajectory with the 3D motion of the marker, computed with the ΣΛ model and with
the addition of a third coordinate permitting smooth transitions (pen-up). This results in
helical rather than circular-arc sub-movements. Refer to Berio et al. (2016) for technical
details.

4.6 Conclusion
We have shown how the ΣΛ model, a physiologically plausible model of handwriting move-

ments, can be adapted to the tasks of interactive curve generation, stylisation and rendering

. The parameters of the ΣΛ model have a clear physiological interpretation in terms of both

planning and trajectory formation. At the planning level, the virtual targets correspond to a

motor plan that guides the superposition of a series of ballistic sub-movements. Each sub-

movement is characterised by a set of kinematic parameters that determine the fine evolu-

tion of a kinematic realisation of the motor plan. For the use case of calligraphic stylisation,

the kinematic parameters are Θ= {∆ti ,δi } for the ωΣΛ parameterisation and Θ= {∆ti , s0i , s1i }

for the ωEΣΛ parameterisation, while the parameters Aci and Ti are kept constant to user-

defined values.

In the pattern recognition and handwriting analysis domains the ΣΛ representation has

proved to be useful to accurately reconstruct and characterise handwriting movements (Pla-

mondon et al., 2014; Ferrer et al., 2018), with applications ranging from forgery detection

(Gomez-Barrero et al., 2015) to the study of motor-related problems such as Parkinson’s dis-

ease(Plamondon et al., 2013). In our application, the ΣΛ parameterisation becomes espe-

cially useful to interactively edit trajectories with an interface that is similar to conventional

CGAD methods, and to generate variations of a trajectory that are similar to the ones that

would be produced by a human.

The parameterisation of the model also comes with a drawback, when it comes to auto-

matically generating calligraphic stylisations of a motor plan. With the previously described

approach, a user is required to explicitly set the kinematic parameters through an interac-

116 Chapter 4. Calligraphic stylisation: the Sigma-Lognormal model

tive user interface. However, choosing these parameters automatically remains challenging

and the ΣΛ model per-se does not provide a systematic way to do so. In the next chapter,

we address this limitation with a different parameterisation and a different trajectory forma-

tion method that is based on optimisation. In Chapters 8 and 9 we will go back to the ΣΛ

model and exploit its structure to determine the kinematic parameters automatically with

an example-driven procedure. Combining optimisation methods with the ΣΛ remains a

promising area of future work, and we will expand further on this topic in the conclusion

of Chapter 8 and in Chapter 12.

Chapter 5

Calligraphic stylisation:

Minimal intervention control

This chapter is largely based on published work developed in a collaboration between my-

self, Prof. Frederic Fol Leymarie and Dr. Sylvain Calinon (affiliation: Idiap, Switzerland). The

collaboration resulted in two conference papers (Berio et al., 2017b,c) and one book chapter

(Berio et al., 2020a). This body of work was initially based on optimal control techniques de-

veloped by Dr. Calinon for programming by demonstration applications in robotics, which

include the stochastic solution to the discrete optimal control problem discussed in Section

5.1.5 and the solution for multiple tracking references discussed in Section 5.1.7 Calinon

(2016b). My contribution includes the development and implementation of the remaining

methods and formulations discussed in this chapter, which I developed with the specific aim

of interactive curve editing and calligraphic curve generation. This chapter includes addi-

tional details and extensions that I have developed in the context of this thesis and are not

included in the our previously published works. This includes an updated formulation that

enables arbitrary sampling quality of trajectories Section 5.1.1, and an improved derivation

of periodic trajectories Section 5.1.6.

In the previous chapter, we have seen how the ΣΛ model can be used as an interac-

tive curve generation tool, and how its physiologically plausible parameterisation can be ex-

ploited to generate variations and stylisations of a trajectory that mimic the variability that

would be seen in multiple instances of human drawing or writing. In this chapter, we adopt

a complementary approach, in which a trajectory is explicitly defined in terms of its desired

precision and variability. The result is a versatile trajectory generation method that does not

generate one, but a family of trajectories that can be stochastically sampled from a probabil-

ity distribution. As we shall see, the same stochastic formulation also allows for an intuitive

118 Chapter 5. Calligraphic stylisation: Minimal intervention control

interface, which can be used to determine the fine curvilinear evolution of a trajectory, and

finally to generate traces that are qualitatively similar to instances of graffiti tags and callig-

raphy.

The input to the method is again a motor plan, but this time it is augmented with a

mixture of Gaussians (MoG) describing a spatial distribution. The output is a distribution of

smooth trajectories, with kinematics that are similar to the ones that typically characterize

human hand motions and variations determined by the input distribution. We generate a

trajectory by forcing a dynamical system to track the centers of Gaussians with a precision

determined by their respective covariances. The trajectory evolution is determined by opti-

mization, with an objective formulated as a trade-off between tracking accuracy and control

effort. Control effort is expressed as the square magnitude of position derivatives, preferably

of high order, e.g. jerk (3rd) or snap (4th), which results in smooth trajectories that are consis-

tent with the minimum-square-derivative hypothesis (Flash and Hogan, 1985), but also obey

a minimal intervention principle (Todorov and Jordan, 2002b), where deviations from max-

imal smoothness are corrected only when the required precision is high. As a result, we will

refer to the trajectory generation method as minimal intervention control (MIC).

5.1 Trajectory Generation
The input to our method is a sequence of multivariate Gaussians N

(
µi ,Σi

)
defined in a

Cartesian space of dimension D , which is equivalent to a mixture of Gaussians (MoG) with

uniform weights. The output of the method is a distribution N
(

y ,Σy
)

of smooth motions

that track the centers µi with a precision defined by the corresponding covariances Σi . The

centers µi coincide with the vertices p i of a motor plan. At the same time, the covariance

structure of the MoG provides explicit control over the variability and smoothness of the tra-

jectory in the region of each vertex, together with local or global control of the curvilinear

evolution of the trajectory.

Trajectories are generated by optimizing the evolution of a dynamical system that tracks

each MoG component sequentially for a given amount of time. A decrease in the variance of

(a) (b) (c)

Figure 5.1: The trajectory generation method in a nutshell. (a) An input GMM is considered as (b) a se-
quence. (c) These ordered components are then used to guide the evolution of a dynamical
system.

5.1. Trajectory Generation 119

(a) (b) (c)

Figure 5.2: Variations of a trajectory by manipulating one covariance matrix. (a) using an isotropic co-
variance with low variance (high precision). (b), an increase in variance produces a smooth-
ing effect. (c) a full (anisotropic) covariance can be used to force the trajectory to remain in
a flat region of space.

(a) (b)

Figure 5.3: (a), smoothing effect of increasing the variance of a Gaussian. (b), manipulating the trajec-
tory evolution with full covariances. Below each trajectory, its corresponding speed profile.

a component corresponds to an increased precision requirement, and thus forces the trajec-

tory to pass nearer the component center (Figure 5.2a). A sufficiently low variance then pro-

duces an interpolatory behavior. An increase in the variance corresponds with a lower pre-

cision requirement, and thus produces a smoothing effect that is similar to the one achieved

with smoothing splines (Figure 5.2b). However, the use of full covariances allows more com-

plex spatial constraints to be captured, such as forcing a movement to follow a given direc-

tion or to pass through a narrow region of space (Figure 5.2c). The resulting trajectories are

smooth and have kinematics that are similar to the ones that would be seen in a movement

made by a drawing hand, with desirable features such as bell shaped speed profiles and an

inverse relation between speed and curvature (Figure 5.3).

5.1.1 Dynamical system

We model the spatial evolution of trajectory with a linear time invariant (LTI) system of order

n. The evolution of each coordinate x along a trajectory is governed by the state equations

ẋ = Āx + B̄u,

y = C̄ x

where the state

x =
[

x, ẋ, ẍ . . . ,
(n−1)

x
]�

∈Rn

120 Chapter 5. Calligraphic stylisation: Minimal intervention control

concatenates position and its derivatives up to order n −1. The system matrices Ā, B̄ and C̄

describe the time invariant response of the system to an input command u, and are given by

the canonical form

Ā =



0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

0 0 0 · · · 0


∈Rn×n , B̄ =



0

0
...

0

1


∈Rn×1, C̄ =



1

0
...

0

0



>

∈R1×n (5.1)

where C̄ is a “sensor matrix” that determines what elements of the state are observed in a

feedback system. This system definition consists of a chain of n integrators commanded

by its n-th order derivatives. As an example, a linear system of this type with order 2 is is

equivalent to a spring-mass-damper system that is controlled with acceleration commands.

5.1.1.1 Discretisation

To compute a trajectory that tracks the centers of M Gaussians, we use a discretisation of

the system with N time steps of constant duration ∆t . This corresponds to a control signal

consisting of N −1 piecewise constant commands u1, . . . ,uN ∈ RD and results in a sequence

of N points x1, . . . , x N ∈RD along the trajectory. We use an exact discretisation (Haugen, 2005)

of the system, and this allows to retrieve trajectories of arbitrary precision once an initial, and

possibly sparse, estimate has been computed. In the general case this is given by:

Ad = e Ā∆t and B d =
∫ ∆t

0
e Āt d t B̄ .

For the specific case of a chain of integrators the integral can easily be computed in closed

form with (DeCarlo, 1989, pg. 215):

e

Ā B̄

0 0


>

=
Ad B d

0 I

 .

which corresponds to a zero order hold (ZOH) discretisation of Ā and B̄ .

We determine the points at each time step t of a trajectory with the discrete state equa-

5.1. Trajectory Generation 121

tions:

x t+1 = Ax t +B u t (5.2)

y t =C x t (5.3)

where the state x t concatenates the D coordinates of a position with its derivatives up to the

order n −1 with:

x t =
[

x1, . . . , xD , ẋ1, . . . , ẋD . . . ,
(n−1)
x1 , . . . ,

(n−1)
xD

]> ∈RDn . (5.4)

The discrete time system matrices A ∈ RDn×Dn , B ∈ RDn×D and C ∈ RD×Dn are block

matrices with one block for each entry of Ad ,B d ,C̄ . Each block is given by a D ×D iden-

tity matrix I multiplied by the scalar in the corresponding entry. This can be conveniently

computed with the Kronecker product operator ⊗ with:1

A = Ad ⊗ I , B = B d ⊗ I and C = C̄ ⊗ I .

It can be shown that the system formulation in equation (5.1), together with a piecewise

constant control sequence, results in a polynomial spline of degree at least n. The spline

is C n−1 continuous and has one knot for each step in the command sequence (Kano et al.,

2005). As a result, given a possibly sparse sequence of N commands u1, . . . ,uN and an initial

state x1, we can efficiently retrieve a smooth trajectory x(t) with arbitrary precision. Since

the discretisation in equation (5.4) is exact, this can be done by computing the discretised

system matrices with a reduced time step ∆t ′ and iteratively computing the trajectory with

equation (5.2), starting from x1 and with each command u t being kept constant for ∆t
∆t ′ time

steps.

5.1.2 Optimization objective

We generate N samples along a trajectory by computing an optimal controller that mini-

mizes a quadratic cost, which penalizes a trade-off between deviations from a reference state

sequence {x̄ t }N
t=1 (tracking cost) and the magnitude of a control command sequence {u t }N−1

t=1

(control cost). The optimization objective is expressed with the summative cost:

J =
N∑

t=1
(x̄ t −x t)>Q t (x̄ t −x t)+

N−1∑
t=1

u>
t R t u t , (5.5)

subject to the constraint of the linear system defined in equation (5.2) and where Q t and R t

are positive semi-definite weight matrices that determine the tracking and control penalties

for each time step. The linear constraint guarantees that the output of the method is a trajec-

1The kron command is available in most linear algebra packages such as Matlab or NumPy.

122 Chapter 5. Calligraphic stylisation: Minimal intervention control

tory that has continuous derivatives up to the order n −1. As the discretisation time step ∆t

tends to zero, the resulting trajectory becomes an increasingly accurate approximation of a

spline of degree (2n −1) with (2n −2) continuous derivatives (Zhang et al., 1997).

The combination of a linear system with this type of optimization objective is com-

monly used in process control and robotics applications, where it is known as discrete Linear

Quadratic Tracking (LQT) and corresponds to the linear case of Model Predictive Control

(MPC) (Zeestraten et al., 2016b). This results in a standard optimization problem that can

be solved iteratively or in batch form and produces an optimal controller or control com-

mand sequence. In typical control settings, the optimization is performed iteratively over

a time horizon of observations, and is thus commonly known as receding horizon control.

However, for the intended use case of curve design, we can apply the optimization to the full

duration of the desired trajectory. With the appropriate formulation of the reference, this re-

sults in a flexible curve generation method that can be used similarly to more conventional

curve generation methods.

5.1.3 Tracking formulation

We formulate the reference state and weights for the optimization objective, by considering a

decomposition of a movement that tracks M Gaussians, into M −1 ballistic sub-movements.

With an assumption of local isochrony, we assign each sub-movement a fixed number of time

steps Ts resulting in a sub-movement duration of Ts∆t . This gives a tracking reference with

N = (M −1)Ts +1 time steps and assigns each Gaussian a passage time τt , with τi+1−τi = Ts ,

and with τ1 = 1 and τM = N . Each Gaussian is also assigned an activation function:

hi (t) = φi (t)∑M
j=1φ j (t)+e−6

with φi (t) = exp

(
− (t −τi)2

2σ̂2
h

)
and σ̂h = 3Ts

2
σh , (5.6)

computed in terms of a radial basis function (RBF) φi (t), where σh ∈ (0,1] is a global param-

eter which defines the time interval covered by each state, and the denominator term e−6

avoids divisions by zero while guaranteeing that σh = 1 results in the time intervals covering

all time steps.

The reference states and weights are then generated by assigning to each time step the

state for which hi (t) > 0.5 (Figure 5.4, second row) with:

x̄ t =C>µi and Q t =C>Σ−1
i C . (5.7)

With this formulation the derivatives of the trajectory are fully determined by the opti-

mization procedure, which is expressed by setting the corresponding precision terms Q t to

zero. Intuitively, a zero entry in Q t means that the optimization has no precision require-

ments for the corresponding state entry and thus is free to enforce the smoothness require-

5.1. Trajectory Generation 123

0 20 40

t

0

1

φ
i
(t

)
(a)

0 20 40

0

1

h
i
(t

)

σ t = 0.0

0 20 40

t

0

1

(b)

0 20 40

0

1

σ t = 0.5

0 20 40

t

0

1

(c)

0 20 40

0

1

σ t = 1.0

Figure 5.4: Effect of different activation sequences with the same set of Gaussians (color coded). The
first and second row show respectively the RBF term φti for each Gaussian and the resulting
activation hi (t). The third row shows in color the time steps covered by each state. The
fourth row shows the resulting trajectories and their Gaussians.

ment expressed in the second term of the cost function. In typical applications, the tracking

weights Q t are defined as diagonal matrices, such as the case of smoothing splines. This cor-

responds to a penalty in terms of the Euclidean distance to a reference state. In our stochas-

tic formulation, the weights are expressed as full precision matrices, which corresponds to a

penalty in terms of the Mahalanobis distance2 to the reference state. When it is desirable to

force the movement to a full stop, this can be done by setting Q N = I and all the derivative

terms in x̄ N to zero.

Increasing the value of σh increases the time interval covered by a state, with σh = 1

2Corresponding to the Euclidean distance in a transformed coordinate system determined by the mean and co-
variance of a Gaussian (Murphy, 2012).

124 Chapter 5. Calligraphic stylisation: Minimal intervention control

resulting in a step-wise reference that fully covers the time steps of the trajectory (Figure

5.4c). This increases the influence of the MoG covariances on the resulting trajectory, and

allows a user to specify curvilinear trends and variability for longer segments of the trajectory.

As the parameterσh tends to zero,φi (t) will converge to a Delta function (Figure 5.4a), which

will result in Q t being non-zero only in correspondence with each passage time τi . This

gives smoother trajectories that interpolate the control-points. In general, a smaller time

interval will result in a sparser tracking cost in the objective. This increases the influence of

the control cost and potentially facilitates the addition of objectives and constraints to the

optimization.

5.1.4 Control weights

The weight matrices R t define a penalty on the amplitude of control commands. Typically

this cost is formulated as a constant diagonal term that is inversely proportionally to the max-

imum square norm of the control command, where a larger term produces smoother trajec-

tories (Figure 5.5.a). However, manually setting this value can be counter-intuitive, especially

when varying also the order of the system (Figure 5.5.b). In order to achieve approximately

equal tracking performance across different system orders (Figure 5.5.c), we express the con-

trol cost in terms of a maximum allowed displacement ∆max. To compute the corresponding

terms in R t we exploit the frequency gain of the system, which for the case of the chain of

integrators simply reduces to 1/ωn (refer to Appendix C.1 for additional details and deriva-

tions), whereω is the angular frequency of a sinusoidal input. The diagonal weights in R t are

given by

R t = 1

(ωn∆max)2 I and ω= 2π

Ts∆t
, (5.8)

where the frequencyω is empirically set using the duration of one sub-movement as a period.

Lower values of ∆max tend to smooth the trajectory, while higher values generate sharper

paths. Because the cost function is defined as a trade-off between tracking and control cost,

it is in practice possible to achieve the same effect by either increasing the variance of the

Gaussians or decreasing the value of ∆max.

5.1.5 Stochastic solution

The optimal trajectory can be retrieved iteratively using dynamic programming (Calinon,

2016a), or in batch form by solving a large ridge regression problem. While we leave details

on the former iterative solution to Appendix C.2, here we focus on the latter, which results in

a more compact solution and provides great additional flexibility, such as a straightforward

probabilistic interpretation of the result and the possibility to generate periodic trajectories.

To compute the solution, we exploit the time invariance of the system, and express all

5.1. Trajectory Generation 125

(a) (b) (c)

(1 0 −1 1)

5 (1 0 −1 1)

(1 0 −1 0)

k = 2

k = 3

k = 4

k = 5

Figure 5.5: Order independent control weight. (a) Trajectories for a 4th order system, for different di-
agonal values of r with R i = r I . (b) Varying the system order while keeping r constant. (c)
Varying the system order with a displacement based weighting, using ∆max = 25.

future states as a function of the initial state x̄1 with:

x̂ = Sx x̄1 +Su u , (5.9)

where

Sx =




I

A

A2

...

AN




and Su =




0 0 . . . 0

B 0 . . . 0

AB B . . . 0
...

...
. . .

...

AN−1B AN−2B . . . B




.

We then express the objective (5.5) in matrix form as:

J = (x̄ − x̂)� Q (x̄ − x̂)+u�Ru , (5.10)

where Q and R are large block matrices with Q t and R t along their block diagonals, while x̄ ,

x̂ and u are column vectors respectively stacking the reference, state and control commands

for each time step. Substituting (5.9) into (5.10), differentiating with respect to u and setting

to zero results in a least squares solution gives:

u = (
Su

�QSu +R
)−1

︸ ︷︷ ︸
Σu

Su
�Q (x̄ −Sx x̄1) , (5.11)

which is then substituted back into (5.9) to generate a trajectory.

126 Chapter 5. Calligraphic stylisation: Minimal intervention control

5.1.5.1 Stochastic sampling

We can see that equation (5.11) is equivalent to a ridge regression solution where R effec-

tively acts as a Tikhonov regularization term, giving a global smoothing effect on the gener-

ated trajectory. From a probabilistic perspective, R corresponds to a Gaussian prior on the

deviations of the control commands from 0. The minimization of equation (5.10) can then

be interpreted as the product of two Gaussians:

N (u,Σu) ∝N
(
Su

−1 (x̄ −Sx x̄1) ,Su
�QSu

)
N (0,R) , (5.12)

describing a distribution of control commands with center u and covariance Σu . By using the

linear relation (5.9) the distribution in control space can also be interpreted as a trajectory

distribution:

N
(

y ,Σy
)

with Σy = SuΣu Su
� .

(a)

0 100 200 300 400 500 600 700
t

0

500

1000

|
̇ y|

(b)

(c)

Figure 5.6: Stochastic sampling from the trajectory distribution. (a) GMM with corresponding trajec-
tory overlaid with samples from the trajectory distribution. (b) Sampled speed profiles. (c)
Single samples from the trajectory distribution.

This formulation results in a generative model of trajectories, which can be used to gen-

erate variations that are similar to the ones that would be seen in multiple instances of human

writing or drawing. Because of its lower dimensionality, it is preferable to generate variations

at the control level, which can be done by exploiting the eigen decomposition:

Σu =Vu DuVu
� , (5.13)

with Vu a matrix with all eigenvectors along the columns and Du a matrix with the corre-

sponding eigenvalues along the diagonal. We can then generate samples around the average

5.1. Trajectory Generation 127

commands sequence u with:

u′ ∼ u +Vu Du
1
2 N (0,σu I) ,

with σu a user-defined parameter representing the variation in the samples. The resulting

trajectories can then easily be retrieved by plugging the samples u′ into equation (5.9).

5.1.6 Periodic motions

In order to generate periodic motions, we require a reference state sequence x̄ . This can be

obtained by considering a sequence of M+1 Gaussians, with the first one repeated at the end

of the sequence. We then reformulate the LQT objective so it optimises also for the initial

state x1 and by adding an equality constraint on the initial and final state of the trajectory.

This constraint can be formulated with the linear relation:

K x = K (Sx x̄1 +Su u) = 0 , (5.14)

with K a matrix inRDn×DnN with zero blocks everywhere except for the first and the last time-

steps, which are set to −I and I respectively. Adding the constraint to equation (5.10) results

in the Lagrangian:

L (u, x1,λ) = J +λ>K x̂ . (5.15)

Differentiating for u, x1 and the Lagrange multipliers λ and then equating to 0 results in the

constrained solution in matrix form:
u

x1

λ̂

=


Su

>QSu +R Su
>QSx Su

>K>

Sx
>QSu Sx

>QSx Sx
>K>

K Su K Sx 0


−1

︸ ︷︷ ︸
ΣO

u


Su

>Qx̄

Sx
>Qx̄

0

 . (5.16)

Dropping the third columns and rows corresponding to the equality constraint, results in a

non periodic solution that produces an optimal initial state x1. This is useful to mimic the ap-

pearance and kinematics of trajectories that do not begin at a rest position, such as the case

of a calligraphic movement that begins in the air rather than on the drawing surface. The ex-

tended solution (with or without the constraint) admits a stochastic sampling identical to the

one defined above (Figure 5.7), which can be done by computing the eigen decomposition in

equation (5.13) with the matrix ΣO
u instead of Σu .

5.1.7 Multiple references

The output of the LQT optimisation procedure can be interpreted as a time varying flow field

(Calinon and Lee, 2019) that depends on the minimisation of the tracking term of the cost

128 Chapter 5. Calligraphic stylisation: Minimal intervention control

(a) (b) (c)

Figure 5.7: Stochastic sampling of periodic trajectories. (a) A sequence of Gaussians in a squared con-
figuration, producing a circular trajectory and corresponding stochastic samples. (b) In-
creasing the precision of one Gaussian forces the trajectory and the sample to pass through
its center. (c) Using a sparse tracking reference (σh = 10−4) forces the trajectories to inter-
polate the centers, but allows for higher variance in the remaining trajectory segments.

Figure 5.8: Periodic motions using Gaussians with different variances. The speed profiles are repeated
(in light gray) to visualise the periodicity of the speed profile.

function. In addition to the definition of constraints, such a formulation can also be ex-

tended with additional quadratic costs that allow to track multiple references with different

precision requirements. As an example, this is exploited in a robotic “learning by demonstra-

tion” application by Calinon (2016b), in which the cost function is expressed in a number p

of different coordinate systems. The augmented cost function (from equation (5.9)) is given

by:

J =
p∑

i=1
(x̄ i − x̂)�Q i (x̄ i − x̂)+u�Ru , (5.17)

such that a trajectory of control commands can be retrieved with:

u =
(

p∑
i=1

Su
�Q i Su +R

)−1 p∑
i=1

Su
�Q i

(
x̄ i −Sx x1

)
. (5.18)

Note that the multiple objectives are fully determined by the matrices Q i and vectors x̄ i ,

5.1. Trajectory Generation 129

Figure 5.9: Adding a tracking reference with time varying velocity. (a) Trajectory with a single reference
and isotropic covariance. (b) Adding a second reference to the objective, with a time varying
(constant) velocity field (red segments) and starting from an initial orientation and a con-
stant diagonal matrix Q = 5×10−4I . (c) Effect of varying the initial orientation. (d) Effect of
increasing the diagonal term in Q to 1×10−3.

Figure 5.10: Additional reference with a time varying coordinate system on velocity. (a) Trajectory with
a single reference and isotropic covariance. (b,c,d) Adding a second reference to the objec-
tive, consisting of a time varying coordinate frames (red and blue arrows) for the diagonal
blocks of Q corresponding to velocity terms. This forces the the velocity at each time step
to be parallel with the axes of the corresponding frame.

while the remaining terms remain constant across the sums. As a result the same procedure

can be easily extended to the constrained case by replacing all the block entries of equation

(5.16) in which the terms Q and x̄ appear, with the corresponding sums over the terms Q i

and x̄ i for each reference.

Figure 5.9 shows an example application of this approach, where a trajectory is gener-

ated with one reference constructed with isotropic covariances (Figure 5.9.a). We then con-

sider also a second reference (p = 2) consisting of a time varying velocity field. The reference

130 Chapter 5. Calligraphic stylisation: Minimal intervention control

is constructed with a vector x̄2 consisting of zeros everywhere except for the velocity terms

form each time step. Each term consists of a vector that linearly changes orientation as a

function of the time step. The corresponding weight matrix Q2 is zero everywhere with the

exception of the diagonal entries corresponding to the velocity of each time step. These en-

tries are set to a small value that determines a trade-off between the requirement to track the

Gaussians, and the requirement to track the velocity specified in x̄2. Using small weights and

varying the orientation of the field results in different stylisations of the resulting trajectory

(Figure 5.9b,c). A larger weight forces the trajectory to track the velocity and produces a result

that is very different from the original (Figure 5.9).

With a slightly different approach (Figure 5.10), we can enforce a looser constraint that

induces the trajectory velocities to be parallel with the axes of a rotated orthogonal coordi-

nate system. This can be done by setting all entries of x̄2 to zeros, and setting the diagonal

blocks of Q2 to v t v>
t , where v t is the direction of one coordinate axis for a given time step.

Both this method and the one explicitly using a time varying velocity reference can be used

with higher derivatives as well (e.g. acceleration). These methods demonstrate a first exam-

ple in which a user is able to simply specify a motor plan with an arbitrary number of vertices,

and then to generate a variety of kinematic realisations of the motor plan by globally adjust-

ing a few parameters. The parameters determine the global trajectory smoothness, as well as

the way in which the second reference evolves in time (e.g. for this case, speed of rotation)

and its weight (through a constant diagonal scaling of Q).

5.2 User interfaces

The proposed trajectory generation method is efficient and is well suited for the interactive

and procedural design applications. In an interactive setting, it is in fact trivial to drag the

centers of the input Gaussians with a typical point-and-click procedure, and it is also easy

to interactively manipulate the covariances. This can be done by manipulating an ellipsoid,

where the center of the ellipsoid defines the mean µi , and the axes are used to manipulate

the covariance Σi through its eigen decomposition:

Σi =Θi S i S iΘ
>
i , (5.19)

where Θi corresponds to an orthogonal (rotation) matrix, and S i to a scaling matrix. For

example, consider the 2D case in which the rotation and scaling matrices are given by:

Θi =
cosθi −sinθi

sinθi cosθi

 , θi = tan−1 a2

a1
, S i =

 ‖a‖
2 0

0 ‖b‖
2

 , (5.20)

5.2. User interfaces 131

Figure 5.11: User interaction and kinematics driven brush rendering effects.

where a and b are the major and minor axes of an ellipse, which can be interactively dragged

to manipulate the shape of the distribution (Figure 5.11, left). While the examples given are

two dimensional, an extension to three dimensional ellipsoids is straightforward to imple-

ment with a so called arc-ball interface (Shoemake, 1992).

Similarly to the case of the ΣΛ model, MIC generates smooth trajectories that resem-

ble the kinematics of a human hand motion. A trajectory generated over a sequence of M

Gaussians will typically produce a speed profile characterised by M −1 peaks and local min-

ima corresponding with curvature extrema along the trajectory, which is consistent with the

stereotypical inverse speed/curvature relation seen in human movements (Lacquaniti et al.,

1983). As a result, the exact same methods demonstrated in Chapter 4 can be used to generate

and animate strokes by incremental sampling of a trajectory. One advantage of this method

is that it easily generalises to dimensions higher than two, and additional coordinates can be

used to smoothly vary parameters such as brush width (Figure 5.26).

5.2.1 Mimicking Bézier curves

The same optimisation framework can be used to mimic the shape and behavior of (cubic)

Bézier curves, resulting in a user interface (UI) that is almost identical to its parametric coun-

terpart. At the same time, this provides the flexibility of MIC, such as the ability to easily

adjust the trajectory smoothness. Furthermore, MIC guarantees trajectory smoothness re-

gardless of the configuration of control points. This is particularly useful for calligraphy gen-

eration, where the desired trajectories are usually smooth.

It has been shown that cubic Bézier curves (Egerstedt et al., 2004) and splines (Egerstedt

and Martin, 2009) can be interpreted as the trajectories of a second order dynamical system

which minimise acceleration commands. Indeed, we can see that with the previously de-

scribed key-point formulation, it is possible to closely approximate a Bézier curve. This can

be done by (i) setting the first order derivative entry of the sensor matrix C also to I , then

(ii) specifying a reference with Qt zero for all time steps, except for the first and last ones

132 Chapter 5. Calligraphic stylisation: Minimal intervention control

Bezier
MIC

0.0 0.5 1.0
t

160

180

200

220

240

260

Sp
ee

d

System order: 2

0.0 0.5 1.0
t

0

200

400

600

800

1000

1200

A
cc

el
er

at
io

n

Bezier
MIC

0.0 0.5 1.0
t

160

180

200

220

240

260

Sp
ee

d

System order: 3

0.0 0.5 1.0
t

0

200

400

600

800

1000

1200

A
cc

el
er

at
io

n

Figure 5.12: Approximating cubic Bézier curves (red) with optimal control (black). The curve control
points are visualized as blue circles. First row, a 2nd order system computed with N = 30
timesteps and two input states consisting of the initial and final positions and velocities.
As the number of timesteps increases, the resulting trajectory converges to that of a Bézier
curve as shown by Egerstedt et al. (2004). Second row, the Bézier curve can also be repro-
duced by using a 3rd order system and computing the optimisation for only two time steps,
while also optimising for the initial state x1.

that are set to C�C , and, finally (iii) specifying the corresponding desired states with the po-

sition and derivative of the first and last Bézier control points. This method allows to closely

approximate a Bézier curve.

At the same time, we observe that we can also mimic the behavior and shape of a Bézier

curve by using a step-wise tracking reference. This can be done by placing isotropic covari-

ance Gaussians centered at each control point of the curve, and then adjusting the influence

of intermediate control points on the trajectory by uniformly increasing the variance of each

corresponding Gaussian (Figure 5.13).

If we relax the constraint of reproducing accurately the Bézier traces, we obtain a curve

5.2. User interfaces 133

Figure 5.13: Mimicking piecewise cubic Bézier curves (created with Adobe Illustrator, in red) with MIC
(black) using a stepwise reference σh = 1, isotropic Gaussians and a 4th order system. Be-
low, the corresponding speed profiles normalised and superposed for comparison. Note
that the Bézier speed (red) goes to zero because Illustrator produces curve segments with
coincident control points. (a) Initial trajectory resulting from Bézier control points. (b)
solving also for the initial state x1 results in a slightly different trajectory that does not
begin and end at a rest position. (c) Decreasing the maximum displacement parameter
produces a global smoothing effect.

generation method that produces similar curves, but with the additional flexibility of the

Gaussian representation and the benefit of always maintaining smooth and physiologically

plausible kinematics. The utility of this property in our application is emphasized if we ran-

domly perturb the control points of a letterform and compare the result with the one pro-

duced with a Bézier curve (Figure 5.14). In the examples given, the variances have been set

empirically, but the results suggest that it should be possible to identify a more systematic

relation that leads to an optimal reproduction of the Bézier curve, while guaranteeing trajec-

tory smoothness. This is left as an avenue for future research.

Figure 5.14: Effect of randomly displacing control point positions with Bézier curves (red) and MPC
(black).

While the Bézier curve becomes discontinuous due to the differently oriented tangents

at the loci where the curve segments meet, the MPC formulation tends to maintain a smooth

134 Chapter 5. Calligraphic stylisation: Minimal intervention control

trajectory regardless of the positions of the control points. This can be exploited as an ad-

ditional method to generate synthetic variations of a handwriting or calligraphy trajectory,

which can be interactively edited with a traditional control point and tangent interface. The

same smoothness property can be used to concatenate multiple letterforms with ligatures

that evoke a smooth and natural motion, which can easily be achieved by treating the con-

trol points of the letters as a single trajectory (Figure 5.15).

5.2.2 Semi-tied structure

In the previous sections, we have seen that it is possible for a user to easily generate vari-

ations of MIC trajectory in 2D applications by editing the position of bi-variate Gaussians.

For applications aimed at procedural content generation, it may be desirable to formulate a

more parsimonious way of generating trajectories, in which different stylisations are gener-

ated without having to specify the covariance of each MoG component.

We observe that one convenient way to achieve this result is to enforce a shared orienta-

tion for all covariance ellipsoids. This is easily achieved with the formulation above by keep-

ing the orientationsΘi to a fixed value and results in a “semi-tied” covariance structure (Tan-

wani and Calinon, 2016) of the input MoG, in which all covariances share the same eigenvec-

tors but not necessarily the same eigenvalues. From a motor control perspective, the semi-

tied formalism can be interpreted as the alignment of different movement parts/primitives

with a shared coordination pattern (Tanwani and Calinon, 2016), which is in line with the

hypothesis of postural-synergies at the motor planning level (d’Avella et al., 2003). This im-

plies a shared non-orthogonal (oblique) basis for all the covariances, which produces a shear

transformation that in the 2D case transforms a circle into an oriented ellipse (Figure 5.17).

Oblique coordinates have been suggested to describe the coordination of handwriting move-

ments made with the fingers and wrist (Dooijes, 1983), which suggests another possible bio-

physical interpretation of this result.

Semi-tied covariances provide a simplified parameterisation that allows to explore dif-

ferent stylisations of a key-point sequence with a reduced set of open parameters. The semi-

tied covariances enforce a coupling between the coordinates of the trajectory, which results

in a sense of coordination in the movement. At the same time, minimization of the control

Figure 5.15: Automatic ligature generation by concatenating the control points of two letters. On the
right, a comparative example using Bézier curves.

5.3. Calligraphic stylisation 135

Figure 5.16: Different stylisations of a letter “Z” using semi-tied covariances with different orientations.

Figure 5.17: Illustrative example of the oblique coordinate system that could result from the fine move-
ments in handwriting made by rotating the wrist on a fixed point.

command amplitude produces smooth trajectories that evoke a natural drawing movement.

It is then easy to edit the semi-tied covariances with an interface in which the user can

drag the basis vectors of H and scale the value of h (Figure 5.18). Because the cost function

used in the optimisation is given by a tradeoff between tracking and control costs, it is pos-

sible to keep the maximum displacement ∆max (which determines the control weight) to a

fixed value proportional to the workspace area. The user can then define the smoothness of

the generated trajectory by manipulating h, where an increase in h produces larger covari-

ances and consequently smoother trajectories.

5.3 Calligraphic stylisation
With the previously described interfaces, a user can interactively explore different stylisations

of a target sequence. While the semi-tied covariances enforce a sense of coordination in the

movement, the minimisation of the control cost produces smooth trajectories that evoke a

natural drawing movement (Figure 5.19). A similar method can also be used to generate dif-

ferent stylisations of an input trace, by placing motor plan vertices near its curvature extrema,

which we explore next.

5.3.1 Reconstructing instances of calligraphy

The previous approach can be used to rapidly reconstruct and generate variations of an exist-

ing instance of human made calligraphy (Figure 5.20) or graffiti (Figure 5.21). In such appli-

136 Chapter 5. Calligraphic stylisation: Minimal intervention control

Figure 5.18: Interface for manipulating semi-tied covariances and corresponding trajectories. The user
can drag at the border of the yellow ellipsoid the pair of small white rectangles to redefine
the basis vectors of H with magnitude h which directly impacts all covariances at once.

cations, the user first defines a motor plan with a coarse sequence of Gaussians over salient

positions along the input trace (approximately in correspondence with perceived curvature

extrema), and then adjusts the covariances to modify the trajectory and mimic the curva-

ture and smoothness of the original trace.3 Different kinematic realisations and stylisations

of the input can then be generated by either globally varying the covariances or by using

stochastic sampling. We will demonstrate the usefulness of this approach with automatically

determined motor plans in Chapter 11.

5.3.2 Predefined motor plans

We also test calligraphic stylisation with combinations of user-defined motor plans meant for

letterforms. To limit the effect on stylisation of the letter structure we use prototypical glyphs

that are adopted to teach print letter writing to children (Zaner-Bloser method, 2020), and

set the vertices approximately in correspondence with points along the glyph traces at which

the horizontal or vertical direction of the pen would change (Figure 5.22.a). We then assign

3We note that with our UI this proves easy to do.

Figure 5.19: Calligraphic stylisations of a user-defined motor plan (red). The stylisations are generated
with the brush model described in Chapter 4 and by varying the global orientation of semi-
tied Gaussians and scaling their variance.

5.3. Calligraphic stylisation 137

Figure 5.20: Reconstruction of an instance of calligraphy by New York artist David Chang (courtesy of
the artist) with our interactive user interface.

a Gaussian with the same covariance to each target, producing a trajectory that we consider

to be evocative of stylised handwriting (Figure 5.22.b). We increase the degree of stylisation

by adding vertices to each spine so that the movement begins with either a down-stroke or

a stroke that moves from left to right (Figure 5.22.c). Furthermore, we observe that by con-

catenating the motor plans of consecutive letters into a single one (Figure 5.22.d) results in

smooth ligatures that are evocative of natural writing motion. We test a similar procedure

on more abstract and complex letter templates (Figure 5.23), which results in an accentuated

and diverse visual effect of the different stylisation parameters.

(a) (b)

Figure 5.21: User reconstruction and variation of a graffiti tag. (a) Top left: a graffiti script (tag) made
with a marker by Los Angeles artist “Trixter” (courtesy of the artist). Bottom left: user
defined motor plan and Gaussians for the tag (above), generated by placing points near
salient positions along the original trace and then manually adjusting the covariances to
follow the original trajectory. (b) Top row: the reconstructed trajectory and one variation
made by increasing the regularisation parameter r . Bottom row: two random samples
from the trajectory distribution of the reconstruction.

138 Chapter 5. Calligraphic stylisation: Minimal intervention control

(a) (b)

(d)(c)

Figure 5.22: Stylisation of simple alphabet letters. (a) Target sequences for the letters. (b) Trajectories
generated with MIC (using covariances oriented with θ = 116◦). (c) The same trajectories
with the addition of down strokes and left-to-right strokes. (d) Addition of some ligatures
between letters.

5.3.3 Generating Asemic Tags

We have seen how the probabilistic formulation of MIC together with a semi-tied covariance

formalism can be used to rapidly explore different stylisations of a letter structure, defined

Figure 5.23: Composition of predefined motor plans for the letters “ABRCD” (blue) composing the word
“ABRACADABRA” and stylised by repeating the same covariance for each motor plan ver-
tex. Next to each stylisation the repeated covariance ellipse in yellow.

(a) (b) (c)

Figure 5.24: Asemic tags. (a) A sequence of four asemic glyphs. (b,c) Different calligraphic stylisations
using semi-tied covariances and mimicking graffiti tags. Each row is generated with the
same parameters (Gaussian orientation, covariance, ∆max), but the instances in the col-
umn (c) are generated by concatenating all the glyphs as a single motor plan (i.e. generat-
ing ligatures between asemic forms).

5.3. Calligraphic stylisation 139

1

2

3

4 5

6

(1) (b) (c) (d)

Figure 5.25: Asemic glyph generation procedure.

as a coarse sequence of targets. This parsimonious representation can be exploited in com-

bination with procedural generation methods. The user is then left with the simplified task

of generating coarse point sequences, while the stylised trajectory evolution is generated by

optimal control.

Here we demonstrate a simple application, in which glyph-like structures with no in-

tended semantics, that is “asemic letters” (Figure 5.24.a), are generated procedurally and then

rendered with different styles by optimal control (Figure 5.24.b and c). The procedure to gen-

erate a random asemic glyph is simple and consists of 3 steps (Figure 5.25):

(a) Generate an ordered sequence of m points randomly distributed along a circle.

(b) Offset each point by a random amount, along the radial vector from the circle center.

(c) Refine the ordering of the points so the sequence maximises the distance between con-

secutive points, alike an “inverse” travelling salesman problem (TSP), and rewards cer-

tain stroke directions that might facilitate motor execution by a drawing hand (e.g. down

and left-to-right strokes).

.

5.3.4 Stroke thickness

The same optimisation procedure can be used to smoothly vary the thickness of a brush, by

considering its radius as an additional coordinate in the reference trajectory. To do so, we add

a user configurable diagonal entry to the input covariance matrices which determines the

allowed variability and smoothness of the radius. The result is similar to the output of a disk

B-spline (Seah et al., 2005), but with control on the smoothness of the stroke thickness profile

(Figure 5.26.b,c). Because trajectory samples are denser where the speed is lower, using this

method with a transparent brush results in an effect that mimics a greater deposition of ink

or paint near curvature extrema (Figure 5.26.d).

140 Chapter 5. Calligraphic stylisation: Minimal intervention control

(a) (b) (c) (d)

Figure 5.26: Variable brush thickness smoothing. (a) The texture on the left is swept along the segments
of a motor plan with a thickness that varies linearly between vertices. (b) Sweeping the
same texture along a smooth trajectory that also tracks the brush thickness defined at each
vertex. (c) Effect of increasing the variance for the thickness coordinate. (d) Using a semi-
transparent brush results in denser brush samples near curvature extrema.

Figure 5.27: Comparison of performances between the batch and iterative approaches.

5.4 Discussion

5.4.1 Performance

We have tested our method on a 2.7 GHz Intel Core i7 machine and used OpenGL for hard-

ware accelerated rendering; We have implemented the optimisation code in Python, using

the NumPy (Van Der Walt et al., 2011) linear algebra package, as well as in C, using the Ar-

madillo library (Sanderson, 2010). Both the batch and the iterative approach (discussed in

section C.2) run at interactive rates up to a limit of time steps that depends on the order

of the system and on the sparsity of the tracking reference used in the optimisation (Figure

5.27). The batch solution requires the solution of a linear system of equations which can be

done with a time complexity of O(n3) and becomes rapidly non-interactive as the number

of samples increases. However we observe that a sparse sampling, e.g. Ts = 5 produces the

desired trajectory behavior determined by the Gaussians, and results in a problem that is

manageable also for complex trajectories.

5.4.2 Limitations: passage times

One limitation of the proposed method relates to our assumption of perfect isochrony and

uniformly spaced passage times. As can be seen in Figure 5.28, this assumption results in

trajectories with curvature extrema that do not always coincide with interpolation points or

5.4. Discussion 141

Uniform Centripetal Chordal Nielson-Foley

Figure 5.28: Cubic interpolation with MIC using a second order system and different parameterisa-
tions: Uniform (default), centripetal, chordal and Nielson-Foley. The interpolatory behav-
ior is produced with a value σh close to zero and forcing zero velocity and acceleration for
the last state.

locations that are perceptually related to the location of a Gaussian center. This issue is iden-

tical to the one with uniform spline parameterisation, which is well known for the case of

cubic curves used in the CAGD domain, and has resulted in the proposal of methods such

as Catmull-Rom splines, or non-uniform parameterisations such as centripetal (Lee, 1989),

chordal (Floater and Surazhsky, 2006) and Foley-Nielson (Foley and Nielson, 1989). For the

case of densely sampled trajectories, non uniform parameterisations can easily be adapted

to our method, by appropriately choosing the passage times (Figure 5.28). For sparse sam-

plings, this requires formulating the optimisation with time-varying transfer matrices, which

we leave as an avenue for future developments.

It should be also noted, that while our method is consistent with the motor control

hypothesis of minimum squared derivatives, such methods do not predict a perfect local

isochrony, but rather passage times that are approximately uniform across a given move-

ment (Figure 5.29a). As an example, the passage times for the minimum jerk (MJ) model are

predicted as a byproduct of the optimisation, and this results in the desirable property that

the resulting trajectories interpolate via-points almost exactly at curvature extrema. How-

ever, the solution for time of trajectories with more than one via-point requires a non-linear

optimisation procedure that cannot be performed in real time, at least with the methods de-

scribed in the literature (Figure 5.29b).

It is interesting to note that applying the centripetal parameterisation to a trajectory

generated with a third order system results in a more precise approximation of the optimal

MJ trajectory (Figure 5.29c). As the name implies, the centripetal parameterisation is based

on a low order approximation of centripetal acceleration. This result suggests that a simi-

lar approximation heuristic can be developed for higher order derivatives, which could be a

beneficial extension to our method.

142 Chapter 5. Calligraphic stylisation: Minimal intervention control

(a)
MIC
MJ

(b) (c)

Figure 5.29: Comparing an MJ trajectory (red) and an interpolating trajectory generated with MIC us-
ing a third order system (black). (a) Comparison with uniform parameterisation. (b) Com-
parison with passage times computed using the method of Todorov and Jordan (1998),
resulting in identical trajectories. (c) Comparison with passage times computed with the
centripetal method of Lee (1989).

5.5 Conclusion

We have presented MIC, a method for the generation of smooth curves and motion trajec-

tories using a stochastic solution to an optimal control problem. The output of our method

is a trajectory distribution, which describes a family of motion paths that can mimic the ap-

pearance and the variability of human-made artistic traces. The input to the method is a

sparse sequence of multivariate Gaussians that determine the overall shape of the output

and explicitly define its variability. This results in a representation that is similar to the one

used in conventional CAGD applications, and that can be edited interactively in a similar

manner. While in this chapter we have focused on the generation of 2D trajectories, the pro-

posed methodology can be generalised to higher dimensions. This opens up the possibility

to extend the method to 3D trajectories, as well as taking into consideration the evolution of

additional variables, such as the drawing tool orientation, pressure or color.

For our use case, we let the user explicitly define the MoG components. However a

similar representation can be learned from data with standard maximum-likelihood estima-

tion methods (Calinon, 2016a). Our choice of Gaussians as an input and output distribution

is principally motivated by its effectiveness and simplicity of representation. From a user-

interaction perspective, this allows users to intuitively manipulate the input distributions

by modifying the axes of each MoG component ellipsoid (Figure 5.11). Furthermore, the

straightforward relation of Gaussians to quadratic error terms in linear systems allows us to

solve the optimal control problem at interactive rates and in closed form, all the while offer-

ing a stochastic interpretation of the output. Extending the proposed method to non-linear

dynamical systems and to distributions other than Gaussians represents an interesting av-

5.5. Conclusion 143

enue of future research.

Similarly to the previously described ΣΛ model in Chapter 4, each trajectory generated

by the MIC method reflects a movement with physiologically plausible kinematics. This can

be exploited to produce appealing rendering effects, realistic (to the human eye) animations,

or even to generate smooth motions that can be tracked with a robotic arm (Berio et al., 2016).

One advantage of this method with respect to the ΣΛ model, is that it allows to produce

consistent variations and stylisations of a trajectory with a very compact parameter set, for

example with the use of semi-tied covariances or the addition of multiple tracking references.

We exploit this property in the next chapter, where we use MIC trajectories to generate the

outlines of solid strokes similar to the ones that can be seen in graffiti “pieces”.

While less flexible to control parametrically, we will take advantage of the explicit sub-

movement parameterisation given by the ΣΛ model in Chapter 8, where it will be used as a

basis for a data-driven approach to generate calligraphic stylisations from examples.

Chapter 6

Outline stylisation: Sketching and layering

thick graffiti primitives

“The arrow... everybody’s got their own

arrow. I like that though.”

Zephyr, Style Wars

(a) (b)

(c)

Figure 6.1: Examples of outputs from our system. (a) Stylistic variations of the same stroke describing
a letter “S”. (b) A letter “S” with local layering and arrows at the stroke ends. (c) Combi-
nation and layering of multiple strokes and rendering effects for the graffiti composition
“EXPRESS”.

This chapter is based on a collaboration established by myself and Prof. Frederic Fol

Leymarie together with Dr. Paul Asente and Dr. Jose Echevarria at Adobe Research (San Jose,

California). All the methods have been developed and implemented by myself, with the ex-

146 Chapter 6. Outline stylisation: Sketching and layering

ception of the 2D extrusion method described in Section 6.3, which has been developed by

Paul Asente as an unreleased plugin for Adobe Illustrator. An earlier version of the work re-

ported here is published (Berio et al., 2019).

The trajectory generation methods developed in the previous two chapters result in a

system that allows to interactively or procedurally generate strokes that resemble the ones

seen in calligraphy or graffiti tags. These types of strokes are inherently 1D, and mimic the

rapid traces left by the motion of a writing or drawing instrument. Similarly to typography,

in more sophisticated forms of graffiti art, strokes take on a 2D form and are combined to

produce an outline. Depending on the graffiti sub-genre, these strokes are either sketched

with skillful free hand motions or precisely traced in a geometric way. Strokes are often inter-

locked in complex ways and may have self-occlusions and loops (Ferri, 2016). They are then

fused and traced to create the outline of a highly stylised version of one or a combination of

letterforms (Figure 6.1). The resulting outlines are not limited to the boundary of the letter,

but may extend to suggest where and how different strokes overlap or where a stroke folds

over itself. The result is often evocative of a 3D composition.

In this chapter, we follow a similar strategy to the previous two, and develop an in-

terface that is inspired by the way in which graffiti pieces are typically composed. While

each artist’s method is idiosyncratic, common construction strategies exist (e.g. (Schmid-

lapp, 1996, p.61)). First, a letterform is conceived as motor plan, along which stylised strokes

and parts are then combined in a rough sketch (Arte, 2015).1 Second, the union of these ele-

ments is filled in, often with a combination of gradients and geometric forms that follow the

overall letter and outline structure. Third, and finally, this union of letterforms is outlined to

reveal an overall view consisting of possibly interlocking and overlapping parts. Effects such

as extrusions and highlights are often furthermore added.

Reproducing such results with conventional vector drawing digital tools can be very

challenging. Many, if not all, well known such software packages assume that objects are

separately layered in a back-to-front order (Adobe, 2019b). As a result, creating interlock-

ing patterns and overlaps requires either manually masking hidden parts of an outline, or

cutting overlapping parts and manually removing occluding parts of object outlines. Other

applications, like Adobe Animate (Adobe, 2019a), support planar map decompositions , but

do this in a way that does not maintain the continuity of the original strokes. In both cases,

the required manual interactions are time consuming and, more importantly, one loses the

underlying structure of the drawing. This makes it difficult to perform changes and explore

variations of a drawing.

1With expertise, multiple parts may be sketched as a whole, which can lead to more sophisticated and organic
forms. However, the various parts are often conceived as independent stroke-like elements.

6.1. Stroke Generation 147

As a solution to this challenge, we propose an interactive computational model of “graf-

fiti strokes” (Section 6.1) and develop a method for rapidly combining such strokes into let-

ters and other interlocking patterns (Section 6.2.3). Our stroke model relies on a variant of the

popular skeletal strokes technique (Hsu and Lee, 1994) that we extend to be able to mimic the

appearance of artful complex graffiti (Figure 6.2). We exploit the stroke structure to develop

an efficient method and interface for handling complex layering and self-overlaps. The final

output of our method is a set of non intersecting outlines, like the ones produced by hidden

line removal methods in 3D, but relying on a fully 2D representation and interface.

6.1 Stroke Generation
The basis for our stroke generation method is a variant of the popular skeletal strokes tech-

nique (Hsu and Lee, 1994). We recall from Chapter 3 that a skeletal stroke is defined as an

input shape, called a prototype, that is deformed along a destination path, called spine. The

deformation is performed by mapping portions of the prototype to portions of the spine, and

then generating outlines using a variable-width profile.

Width profile. Typical skeletal stroke implementations assume that the width varies contin-

uously along the spine. However, we observe that components of graffiti letters often have

widths that change discontinuously at spine corners, resulting in an effect that evokes a 3D

projection of a surface or the trace of a chiseled calligraphic pen. To facilitate this, we define

a spine as a sequence of vertex pairs, where each vertex pair is connected by a segment and

each segment has an initial and final width (Figure 6.3).

The subsequently developed stroke model uses only straight segments, but the method

is general enough to work with curved segments as well.2

Prototype deformation. In the standard case of a continuous width profile, the prototype

can be deformed by mapping points along its outline to points that are perpendicular to the

spine. These points are given by a sequence of line segments centered along the spine called

ribs, which are orthogonal to the spine and have lengths depending on the width profile.

This approach can lead to self-folds in the deformed prototype, corresponding to corners

and high-curvature portions of the spine that produce retrograde motion in the resulting

stroke outline (Asente et al., 2007). Such folds are often considered undesirable, and the usual

approach is to avoid them by adjusting the orientations and lengths of the ribs. This can be

done globally (Hsu and Lee, 1994), by using the angle bisectors rather than the normals at

corners and interpolating the intermediate ribs accordingly. Another approach is to perform

the adjustment locally (Asente et al., 2007), which avoids the potentially skewed appearance

of the strokes.

2Both polygonal and curved segmented spines have been considered in my implementations and have been
tested with success.

148 Chapter 6. Outline stylisation: Sketching and layering

Figure 6.2: Graffiti with complicated intertwined strokes, courtesy of the graffiti artists SMART (top)
and ENS (bottom).

Figure 6.3: Strokes with rectangular prototypes and varying width profiles (shown below). Each color
represents a different segment.

6.1. Stroke Generation 149

For the desired use-case, we must accommodate width discontinuities at spine corners.

Moreover, many graffiti styles use folds instead of avoiding these (Figure 6.1). Our definition

of ribs thus differs slightly from the one used by Hsu and Lee (1994) and others.

In our case, each spine segment is covered by a series of ribs that interpolate an initial

and a final rib defined at the segment end-vertices. The first and the last spine vertices are

assigned one rib each, and the rib is perpendicular to the incident spine segment. The inter-

mediate spine vertices are assigned two ribs each, one for each incident spine segment. The

orientations and lengths of these two ribs are computed with a procedure that is discussed

next, and which depends on the width profile and on the orientation of the incident spine

segments.

The ribs at each intermediate vertex (where the spine flexes) are defined using an

oblique coordinate system [û1, û2], centered at the vertex (Figure 6.4a), and given by:

û1 = d̂ 1sgn(α) , û2 =−d̂ 2sgn(α) , (6.1)

where d̂ 1 and d̂ 2 denote the unit tangents preceding and following the vertex, α is the angle

between the two tangents, and sgn(α) ensures that the coordinate system is always oriented

towards the convex part of the stroke. The offsets with respect to this basis are then given by:

o1 = w2

sinα
, o2 = w1

sinα
, (6.2)

with w1 and w2 denoting the profile widths preceding and following the vertex. This con-

struction results in a weighted bisector b = o1û1 +o2û2, whose direction is the same as the

angle bisector when the widths on each side of the vertex are equal.

On the convex side of a vertex, we test the outline angle at b and generate a miter joint if

it is too acute, as is done in conventional stroking algorithms. The ribs at the vertex terminate

either at b or at the miter intersections. On the concave side, the ribs could end at the tip of

the vector −b, removing folds (Figure 6.4a) in a manner similar to the bisector-based method

proposed in the original skeletal strokes implementation (Hsu and Lee, 1994). However, for

our application we exploit the folds in order to render overlapping effects. To do so, we end

the ribs at the tips of the vectors w̌ û1 −b and w̌ û2 −b (Figure 6.4b). Here w̌ is the minimum

of o1 and o2 scaled by an angle fall-off function:

1−exp

(
−α

2

σ2
α

)
, (6.3)

that decreases the amount of folding proportionally to the angle between spine segments,

according to a user configurable parameter σα that we set experimentally to π/4 (Figure 6.5).

This avoids excessive folding for obtuse angles and, for our use case, improves the visual

150 Chapter 6. Outline stylisation: Sketching and layering

mitering

(a) (b)

Figure 6.4: Corner rib adjustment according to the oblique coordinate system [û1, û2] and corner mi-
tering. (a) Unfolded construction similar to the one proposed by Hsu and Lee (1994).
(b) Folded construction. Below, the ribs generated by each construction.

(a) (b)

Figure 6.5: Effect of the angle fall-off parameter. When σα = 0 the parameter has no effect and (a)
shows the resulting strokes with different angles α between spine segments. A larger value
of σα =π/4 in (b) reduces the amount of folding proportionally to the angle α. This affects
the resulting smoothed trajectory (black) only when the angle α is obtuse and produces a
thicker stroke near the corner in (b) when compared to (a).

quality of the smooth outlines that are discussed in the subsequent section. Note that the

segment-end ribs for a vertex do not actually pass through the vertex, but since our proto-

types are always rectangles, only the rib endpoints matter.

The folds generated by this method remain through the stroke-smoothing step de-

scribed in the rest of this section, and are resolved in the layering method described in Sec-

tion 6.2.

6.1. Stroke Generation 151

(a) (b) (c)

Figure 6.6: Variations of strokes for the same spine and width. (a) Polygonal stroke. (b) Curved stroke
from the smoothed spine (in red). (c) Smoothed outline from the polygonal stroke (outline
in red).

6.1.1 Smooth strokes

In addition to applying strokes to polygonal spines, we would like to smooth these to achieve

certain graffiti styles. One approach would be to smooth the spine before applying the stroke,

but we note that the result often looks rather mechanical and not hand-drawn (Figure 6.6b).

Instead, we first deform a polygonal prototype along the original spine, and then treat the re-

sulting polygonal outline as a motor plan that drives the generation of a smooth stroke using

one or more MIC trajectories (Figure 6.6c). This is easily done by assigning one Gaussian to

each polygonal stroke vertex.

Different types of strokes and stylisations can be produced by either varying the kine-

matics of the motion with the same techniques demonstrated in Chapter 5, or varying the

shape of the prototype used to generate the stroke, which results in a variation of the motor

plan. This allows for a large range of stylistic variations of a stroke. They resemble graffiti art

visually and also mimic the process typically followed when constructing graffiti letters. Fur-

thermore, spines usually consist of a small number of vertices, making them easy to author

interactively or procedurally.

Smooth stroke types. We define three kinds of smooth strokes:

• Squared end strokes are defined with a prototype made by two parallel and similarly

oriented lines. The stroke is then produced by tracing each side of the stroke with two

separate motions, and then connecting the trajectory ends with two straight line seg-

ments.

• Rounded strokes are defined by starting from a rectangular prototype. The stroke is

then produced with a single periodic motion that follows all the vertices of the resulting

skeletal stroke and returns to the beginning. The roundness at the stroke ends can be

152 Chapter 6. Outline stylisation: Sketching and layering

parametrically controlled by adjusting the covariance matrices corresponding to the

vertices at the ends of the stroke (Figure 6.7).

• Closed strokes are defined with a prototype made by two parallel lines and a closed

polygonal spine. A closed stroke is then produced with two periodic motions that fol-

low each side of the deformed prototype.

Some graffiti styles alternate smooth parts of a stroke with polygonal ones. To do so,

we generate smooth trajectories for subsets of the envelope and connect these into a single

stroke (Figure 6.8).

6.2 Apparent layering and overlaps
Graffiti often contains intricate overlaid and intertwined parts with non-global layering (Fig-

ure 6.2). These compositions can be evocative of a 3D projection, but rarely follow the rules

of projective geometry, representing an abstraction or caricature of such rules. A systematic

analysis of the geometry of the “pictorial space” (Koenderink, 2012) used in graffiti is left for

future research. However, we can exploit the stroke-based structure to develop a 2D interface

that allows self-overlaps (Section 6.2.2) and local layering (Section 6.2.3) which prove useful

in applications.

6.2. Apparent layering and overlaps 153

(a) (b)

Figure 6.7: Rounded strokes. (a) The disks depict the covariance ellipses for the vertices of the stroke,
the orange ones being for the stroke ends. (b) Decreasing the variance of these orange disks
reduces the roundness at the stroke ends.

Figure 6.8: A smooth stroke with squared ends (left) and a piece-wise smooth version of it (right)

6.2.1 Partitions

Our layering and self-overlap rendering method relies upon subdividing strokes into a series

of partitions. Each such partition corresponds to a connected portion of the spine represent-

ing a potential layer with an associated depth value. Not all depth assignments are possible;

for example, in Figure 6.9, partition 1 cannot come between partitions 3 and 4 in depth order.

Section 6.2.3 discusses how we prevent impossible assignments. Partitions are also assigned

integer indices, in order, from the beginning of the spine to the end.

The skeletal stroke algorithm allows a straightforward mapping from points on the spine

to corresponding points on the stroke outline. These portions of the outline form the outside

edges of partition shapes (Figure 6.9). For outside corners with bevels, we assign the bevel

edge to the outline of both adjacent partition shapes, and for inside corners with retrograde

segments, we assign the loop area to both, as shown in Figure 6.9.a. This ensures that the

partition shapes fully cover the area of the stroke, sometimes producing small regions where

adjacent partition shapes overlap.

154 Chapter 6. Outline stylisation: Sketching and layering

(a) (b)

11
22

33
4

4

Figure 6.9: Partition shapes (color coded) for a (a) polygonal and (b) smoothly curving stroke.

(a) (c) (d)(b)

Figure 6.10: Different fold cases. (a) Corner in a polygonal stroke. (b) Curvature extrema in a stroke
with a curved spine. (c) Flattened fold in a smooth stroke. (d) Fold in a smooth stroke. The
retrograde portions are marked in red.

For polygonal strokes and spines the subdivision into partitions is trivial: each partition

corresponds to a straight spine segment and the partition shapes are given by the outline

segments mapped to each segment. For a polygonal spine with a smoothed stroke the par-

tition shapes are given by mapping polygonal spine vertices to corresponding vertices in the

smooth stroke outline. An initial estimate of these vertices is given by trajectory points corre-

sponding to the passage time of each Gaussian. We then refine this assignment by identifying

the closest curvature extrema to each pre-identified point. This method can be extended to

other curve generation methods as long as a mapping is possible between the control points

and the resulting curve. For an arbitrarily curved spine the partitioning is based on an esti-

mate of curvature extrema and corners along the spine.

6.2.2 Fold culling

Deforming a prototype according to the proposed method often results in a shape that con-

tains self-folds. Most traditional implementation of skeletal strokes consider this a problem

and suggest methods to overcome these (Asente, 2010; Hsu and Lee, 1994; Lang and Alexa,

2015). In our application, we exploit this property to generate soft strokes (as discussed

above) as well as to achieve stylised folding and overlap effects that are often seen in graf-

fiti art, as well as in comics and other cartoons.

We identify folds with a procedure similar to the method proposed by Asente (2010) and

find portions of the stroke outline that include retrograde motion. For a polygonal spine,

6.2. Apparent layering and overlaps 155

(a)

1 . 0

0 . 5

0 . 0

(b) (c)

Figure 6.11: Stylised folds, showing the effect of the fold-rendering parameter.

these are trivially given by outline segments that are part of a concave portion of the outline

and connect two vertices belonging to two different partitions (Figure 6.10.a). For a curved

spine, these are given by the outline points that map to points of the spine with a radius of

curvature less than the corresponding stroke half-width (Figure 6.10.b). For the case of a

smoothed envelope, we first identify a series of potentially retrograde portions by finding the

smoothed points that map to retrograde portions of the polygonal envelope. However, our

smoothing technique is sufficiently flexible that it does not always maintain the retrograde

segments, so there may not be a fold anymore (Figure 6.10.c). To determine whether there

is a fold, we check if the midpoint of a potentially retrograde portion is contained in both

adjacent partition shapes, in which case the portion is considered retrograde (Figure 6.10.d).

Once all retrograde portions have been identified, we traverse the outline on each side

until we reach a common point of intersection. We then cull the retrograde portion of the

side with lower depth. The remaining side is marked as partially visible according to a user

configurable parameter ∈ [0,1] that interpolates the visibility of the side relative to its length

(Figure 6.11).

6.2.3 Layering and Planar Map

The partitioning scheme allows us to compute a layering of one or more strokes analogously

to the method of Igarashi and Mitani (2010) for 3D shapes on a plane. We compute a planar

map from the combination of all partition shapes, where each partition corresponds to a

156 Chapter 6. Outline stylisation: Sketching and layering

layer. Each edge of the resulting planar map is assigned to an edge of a partition shape and

the corresponding partition index. For each interior face of the planar map we then compute

a partition list LP that indicates which partitions overlap the region defined by the face. This

can easily be done by choosing a point inside the face and testing which partition shapes

contain the point. We then sort the partition list according to an ascending depth order, and

iterate over each face edge. An edge is marked as visible if the partition it belongs to is the

same as the higher one in the depth-sorted partition list.

Resolving impossible layer orders. The procedure above is efficient and can handle many

types of complicated layering structures. At the same time, there can be combinations of par-

titions and depth values that have no consistent layering solutions, especially in the neigh-

bourhood of spine vertices (Figure 6.9.a). To resolve these cases, we use a list graph structure

(Igarashi and Mitani, 2010; McCann and Pollard, 2009), which has a vertex for each inter-

nal face of the planar map and an edge for each pair of faces that are adjacent and share a

common partition.

Impossible overlaps can be detected by examining the connected components of the list

graph and checking for inconsistencies in the layer ordering across the corresponding faces.

For each connected component we compute a list of partitions assigned to it and sort it by

increasing depth. By construction, two partitions with indices pi and p j are adjacent in the

stroke if |pi−p j | = 1. A connected component of the list graph contains an impossible overlap

if any adjacent pair in the list is not contiguous in the depth sorted list. If an impossible order

is detected, we proceed in a manner similar to Igarashi and Mitani (2010) and compute the

maximum area covered by each partition and consider all permutations that do not contain

impossible orders. We then choose the permutation with the lowest number layer of swaps,

weighted by the area of each layer.

Mixing strokes and arbitrary vector inputs. This layering method relies on a partitioning

of the input given by our stroke representation. However, we can also combine strokes with

arbitrary shapes (Figure 6.12.a) as long as each is treated as a single partition with a unique

depth value, in which case the method operates as a vector counterpart of the one proposed

by McCann and Pollard (2009) for bitmap inputs.

Unions. In addition to the depth ordering, we can also easily handle unions between one or

more layers. To do so we define a set of union pairs {pi , p j } between partitions, and cull an

edge if any pair of partitions assigned to it correspond to a union. For example, we can add

arrowheads to a stroke — an effect often seen in graffiti — by simply generating an arrowhead

shape and then specifying a union between the arrow head and the partition corresponding

to the end of a stroke (Figure 6.12.b). The same approach can be used to append arbitrary

caps to the strokes with an effect similar to the one proposed by Jakubiak et al. (2006). A simi-

lar procedure should be possible also with other boolean operation, such as local differences

or intersections, but this is left as an avenue of future development.

6.3. Results and Applications 157

(a) (b)

Figure 6.12: Additional layering effects. (a) A stroke is combined with the outline of a letter “A”. The
letter is assigned a single partition and depth value. (b) A union operation is used to add
an arrow head to a stroke.

6.3 Results and Applications
The combination of the parametric stroke model and the proposed folding and layering

methods lets us easily render intertwined strokes in a way that would be difficult to achieve

with traditional vector graphics methods. The stroke representation can be constructed and

edited with a simple interface and is well suited for the rapid generation of compositions and

renderings that mimic the appearance of graffiti art.

Performance and interaction. The stroke generation and layering procedures can be used

interactively and let a user quickly produce and explore variations of graffiti compositions.

To test the performance of the method we generated patterns of increasing complexity, sim-

ilarly the one shown in Figure 6.17. On a commodity laptop, we achieve frame rates suitable

for interactive editing as long as the number of curve samples is fewer than 1000 (Figure

6.13). For example the letters in Figure 6.16 have about 400 points each and take less than 30

milliseconds for layering and rendering. The main bottleneck of the system is currently the

curve generation method (Chapter 5), when the solution is computed with the least squares

approach. For the case of squared end strokes, the solution can be computed iteratively, in

which case the performance hit of smoothing is negligible compared with the layering pro-

cedure (Figure 6.13, left). When generating closed curves the least squares solution is neces-

sary, and performance is mostly affected by the smoothing procedure (Figure 6.13, right). The

pattern in Figure 6.17 is generated with a single closed stroke, has 7488 vertices and takes 10

seconds for curve generation and 0.2 seconds for layering. For interaction and preview pur-

poses we can limit the number of curve samples, allowing for interactive editing of complex

patterns like the one shown in Figure 6.1.c, which was produced interactively with our UI.

The interface to our method is simple: the user creates a stroke by clicking to define a

sparse sequence of spine vertices. The user can then vary the shape of a stroke by adjusting

stroke parameters such as the amount of smoothing. The width of a stroke can be adjusted

globally with a set of sliders, or locally by dragging perpendicularly to a spine edge. The

layering interface lets a user perform layer swaps in a manner similar to the one described by

158 Chapter 6. Outline stylisation: Sketching and layering

500 1000 1500 2000 2500 30 00 3500 4000
P oints

0.00

0.25

0.50

0.75

1.00

1.25

Ti
m

e
(s

ec
on

ds
)

N on periodic

G lob al
Cu rv e G eneration
L ayering

14 22 36 50 60 74 83
S pine Segm ents

1000 1500 2000 2500 3000 3500 4000
P oints

0

2

4

6

8

Ti
m

e
(s

ec
on

ds
)

P eriodic

G lob al
Cu rv e G eneration
L ayering

14 22 36 50 60 74 83
S pine Segm ents

Figure 6.13: Performance of the method for increasing number of curve samples and spine segments.
Left: non-periodic. Right: periodic.

Figure 6.14: Layering interactions: with a single mouse click, the user can swap depth ordering (mid-
dle) or create unions (right).

Igarashi and Mitani (2010). Clicking on an overlap area brings the bottom-most partition to

the top. Unions can also similarly be created by clicking on an overlap area with a different

tool we provide. (Figure 6.14)

Fills and rendering effects. We generate colorful compositions by exploiting the faces of

the planar map generated during the layering process. Randomly offsetting the faces and

assigning each face a color from a user-specified palette gives results similar to those often

seen in graffiti art (Figure 6.15.d). We can use the same palette to smoothly fill areas in ways

that mimic the diffused use of spray paint. This can be simply done by using the union of

all outlines to mask a raster fill. In the examples given here we generate the fill by randomly

alpha-blending smooth gradient bitmaps over the interior of the outlines (Figure 6.15.c). To

increase the realism of the rendering we can add highlights to parts of the outline that are

approximately perpendicular to a given light direction. This, combined with an extrusion

6.3. Results and Applications 159

(a) (b) (c)

(d) (e)

Figure 6.15: Interactive construction of a graffiti letter "R". (a) Stroke outlines and polygonal spine. (b)
Layered outlines. (c) Fill-in gradients. (d) Geometric effects using planar map faces and
highlights. (e) Extrusion.

Figure 6.16: Graffiti letters (“A” and “R”) generated and rendered with our method.

160 Chapter 6. Outline stylisation: Sketching and layering

effect captures a visual effect that is often seen in conventional instances of graffiti art (Figure

6.15.e). Figure 6.16 shows results that combine all these effects.

Extrusion. One effect that is often seen in graffiti art (Figure 6.2) is a simple oblique isometric

extrusion of the composition as a whole. Our proposed method to construct these digitally

proceeds in 7 steps as follows:

1. Rotate the entire composition so that the extrusion can be done directly downward, in

the negative y direction.

2. Create a planar map from the rotated composition and extract the edges.

3. Split each edge at corners and at extrema in the x direction. The result is a set of straight

and curved segments that intersect each other only at their endpoints. Each segment

has x coordinates that monotonically increase or decrease.

4. Perform a topological sort of the segments, with the ordering function being that seg-

ment s1 is greater than segment s2 if some point on s1 and some point on s2 have the

same x coordinate, different y coordinates, and the point on s1 has a larger y coordi-

nate. This formalizes the idea that s1 is greater than s2 if s1 is higher than s2 in the y

direction.

5. Construct a total order from the partial order produced by the topological sort.

6. For each segment, construct an extrusion face by offsetting the segment vertically by

the extrusion depth and connecting the ends of the original and offset segments. Stack

these faces with the last – the one from the edge with the smallest y coordinate – on the

top of the stacking order.

7. Place the extrusion faces below the rotated composition, and rotate everything back to

the original orientation.

The extrusion faces can then be stroked and filled as desired. Figures 6.1, 6.14, 6.15 and 6.16

show examples produced by our system. The extrusion can be modified by choosing areas to

subdivide more finely, creating an effect similar to that in Figure 6.2, top.

Figure 6.14 also includes a thicker outline around the union of all the strokes, another

common effect seen in street art (e.g. Figure 6.2, bottom).

Generative applications: Weaving patterns. Specifying a stroke with a sparse sequence of

control points is a simple user interaction procedure. The same sparse representation is also

convenient in a procedural modelling applications, in which the system can operate at a high

level by specifying the sparse sequences of control vertices. Then, various stylisations of the

output can be explored parametrically. For example, a simple procedure can generate styl-

ized knots or weaving patterns. We first generate a 2D lattice (Figure 6.17a) and compute an

6.3. Results and Applications 161

(a)

(b)

(c)

Figure 6.17: Weaving pattern generated by constructing an Eulerian cycle (b) over a planar graph (a)
and then using the resulting path to generate one looping stroke (c).

Eulerian path or cycle along the lattice (Figure 6.17b). We then construct a single stroke along

the path, making sure that the depth values of crossings are interleaved (Figure 6.17c). The

results are evocative of more abstract forms of graffiti art and sketchy renditions of weaving

patterns.

Machine drawings. The output of our method is suitable for being realized with a drawing

robot or plotter. Once the primary printing tool in the early days of computing, plotters have

today regained popularity as a creative tool for computer graphics because of their afford-

ability and their ability to create vector drawings using a variety of physical drawing media.

The output of our method is suitable for constructing tool paths for such machines. Fur-

thermore, since we maintain the path ordering defined at the stroke level, the motions of the

machine are visually consistent and often evoke the sequence of movements that would be

followed by a human when producing a drawing (Figure 6.18). This same property could be

used to generate stroke animations from the output of our system.

162 Chapter 6. Outline stylisation: Sketching and layering

Figure 6.18: A pen plotter drawing a weaving pattern generated by our system running on a notebook.

6.4 Conclusion
We presented a system and interface that permit the generation of convincing synthetic

graffiti with simple, flexible stroke representation. Our method generates strokes with self-

overlap effects that are typical of this art form. However, our current approach builds on the

assumption of a rectangular skeletal stroke prototype. Extending this approach to arbitrary

vector inputs is an interesting extension for future studies, but doing so is not trivial. With

complex prototypes (Figure 6.19, left) folded areas can occur within the stroke, and not just

along the boundary. One possible way to handle these cases could be to estimate the spine

through the computation of symmetry axes (Blum and Nagel, 1978). Symmetry axes also

have the potential to extend our layering procedure to arbitrary shapes. While our current

approach relies on the partitioning of the input given by the skeletal stroke spine, the same

partitioning could be computed automatically from the skeleton of the input.

In our description of the layering procedure, we have focused on the generation of out-

lines. In future developments it would be desirable to handle the layering of fill patterns and

gradients defined along a stroke as well. This can be achieved by exploiting the planar map

and partition list generated during our method. The output of our method is a coherent se-

quence of outlines, that can be used for machining applications or to create animations of

the reconstruction of the outlines. However, because of the planar map subdivision, the out-

lines do not reflect smooth movement kinematics. Producing an entirely smooth reproduc-

tion of the outlines is an interesting avenue of future research and would result in a method

that reflects more closely the process used in live constructions of graffiti letters and would

potentially produce more organic stylisations of letterforms. At the same time, our current

6.4. Conclusion 163

Figure 6.19: Layering of strokes with a more complex stroke prototype. On the left, our self-overlap
procedure fails because folds occur within the stroke, and not just along the boundary. On
the right, we shrink the ribs along the bisector, as in Hsu et al. (Hsu and Lee, 1994) and as
discussed in Section 6.1, resulting in a visually consistent output.

Figure 6.20: Overlaps with self-folds. We currently support this effect only through user interaction.
The effect is prohibited by the impossible layer order resolution procedure (right).

approach allows to reproduce a number of stylistic features that are often seen in graffiti art.

For example the stylised letter forms seen in Figure 1.5, in the introduction (Chapter 1), have

been generated with this method and only required a few clicks and adjustments to create;

this is achieved with a procedure that is compatible with the one found in standard stroking

methods in popular software packages such as Illustrator or InkScape.

The layering procedure combined with fold culling can automatically and rapidly han-

dle many different configurations of one or more strokes with self overlaps. However, our

current implementation of impossible layer resolution (Igarashi and Mitani, 2010) does not

permit certain configurations that visually make sense. As an example, it may be desirable

to render a partition of a stroke that passes below a fold produced by the adjacent partition

(Figure 6.20, left), but this effect is discarded by the resolution process (Figure 6.20, right).

In order to handle these cases, we currently allow the user to disable the resolution step and

create this effect by performing layer swaps with a few clicks in the regions of interest. In

164 Chapter 6. Outline stylisation: Sketching and layering

future iterations of this work we plan to handle these cases automatically.

The interface developed in this chapter completes a system in which a user is able to

define a variety of different graffiti styles with a few clicks, and fine-tune the results with

parametric variations of the stroke primitives. In the next part of the thesis, we will recover

these primitives from existing geometry. As we shall see, doing so results in a flexible pro-

cedural generation and stylisation system, which produces outputs that can be edited with

exactly the same procedures that have been discussed in the preceding part.

6.4. Conclusion 165

Figure 6.21: Weaving pattern deformed along a spine and then stylised.

Part II

Part II - Graffitization: Recovering

graffiti primitives from shape

167

Chapter 7

Curvilinear Shape Features

"Since Picasso has some of the most

advanced use of lines in the history of

art, this inevitably means that his central

tool is the use of curvature extrema"

Michael Leyton,

The structure of paintings

(Leyton, 2006)

This chapter introduces the definition of Curvilinear Shape Features (or CSFs). It is the

fruit of brainstorming and many discussions held between myself and Prof. Frederic Fol Ley-

marie since the onset of my PhD studies, as we sought better ways to characterise the shape

of curve traces and contours. This chapter refines and expands an earlier definition and im-

plementation of CSFs, which appears in one conference publication (Berio et al., 2018b) and

one book chapter (Berio et al., 2020b).

7.1 Introduction
The methods described in the next few chapters depend on the recovery of a plausible set

of stroke primitives that reconstruct an input traces and outlines. Doing so extends the pre-

viously described interactive editing, variation, and stylisation methods to arbitrary vector

inputs, laying the foundation for a flexible graffiti and calligraphy stylisation and generation

framework. The types of the input can vary from open digitised traces of tags, handwriting,

drawing, or curves defined in a vector drawing package, to the closed traces of glyphs and

other 2D object outlines.

We have seen in Chapter 3, how extrema of curvature (i.e. with associated contour seg-

ments having a role of support) are the most salient loci along piecewise smooth contours

170 Chapter 7. Curvilinear Shape Features

(a) (b) (c)

Figure 7.1: (a) Interior SA and two concave curvilinear shape features (CSFs) for a closed contour. Each
CSF consists of an extremum (red circle), a local symmetry axis terminating at the extremum
(red axis), a contact region where curvature is approximately constant (thick black seg-
ment), and two support segments (thick red segments). The blue arrows show tangents
computed at the beginning of the support segments of the left CSF. (b) All CSF extrema (cir-
cles along contour) and the corresponding curvilinear augmented symmetry axis (CASA),
which has two new branches that terminate at convex features. The additional branches
allow to easily identify morphological features, such as the bend characterised by the red
and the blue extrema that are “perceptually close” (Singh, 2015). This would be more chal-
lenging with a classic contour-only based approximation of curvature (c), where the two
extrema are far apart in a 1D traversal of the contour.

(Attneave, 1954; Feldman and Singh, 2005; De Winter and Wagemans, 2008b) and play an

important role in the perceptual decomposition of 2D objects (Richards and Hoffman, 1985;

De Winter and Wagemans, 2006) or signed traces (Brault and Plamondon, 1993a,b) into parts.

It follows that an informative analysis of curvature is of key importance for the stroke recov-

ery task ahead of us. In Chapter 8, we seek to recover kinematics from the geometry of a

trace in terms of a motor plan and a set of associated ΣΛ parameters. Given the stereotyp-

ical inverse relation between movement speed and curvature in human hand movements

(Viviani and Schneider, 1991; Plamondon and Guerfali, 1998a), curvature extrema and the

corresponding radii of curvature are useful features for determining the number of generat-

ing sub-movements and ΣΛ parameters for a trace. In Chapter 10, we seek to recover a set of

strokes that reconstruct the outline of a glyph. Again, curvature extrema and their associated

outline regions will prove useful to infer perceptually meaningful parts, to merge these parts

into potentially overlapping strokes and to characterise stroke morphology.

To guide these reconstruction tasks, we seek a feature representation that robustly iden-

tifies salient extrema while providing a precise estimate of the associated center and radius of

curvature, as well as an associated region of influence. To this end, we propose an alternative

to traditional methods based on curvature retrieval, which relies on the geometric analysis

of local symmetries rather than a filtering approach based on calculus (along a curve). We

7.1. Introduction 171

exploit the duality (Leyton, 1987) between the two representations of (2D) contour curvature

and Symmetry Axis Transform (SAT), which allows us to identify significant curvature ex-

trema and discontinuous breaks along an open or closed contour in terms of a set of features

we call curvilinear shape features (CSFs). Figure 7.1.a displays two such features along with

the interior medial axis of a simple object. Each CSF identifies an absolute maximum of cur-

vature along a trace (red dots, M+ or m−) together with a circular arc segment surrounding

the extremum where curvature is approximately constant (thick black segment). In addition,

each CSF is also associated with a local symmetry axis (red) terminating at the extremum

and a pair of curvilinear support segments (light red) — trace segments on each side of an

identified extremum.

The support segments localise the influence of a CSF and facilitate the analysis of ad-

ditional contour features such as tangents near extrema (Figure 7.1.a, blue arrows) or re-

maining curvature features such CSFs for absolute minima of curvature (m+, M−), as well

as permitting the robust localisation of inflection points. This feature set enables a full re-

construction of the curvature function in terms of segments with monotonically varying cur-

vature, bearing similarities to the representations proposed by Leymarie and Levine (1989)

and Baran et al. (2010).

For closed contours, we also use CSFs to compute a curvilinear augmented symmetry

axis (CASA), an augmented version of Blum’s SA (Blum and Nagel, 1978) that, in contrast to

the conventional formulation (Belyaev and Yoshizawa, 2001), is guaranteed to have branches

terminating at all absolute maxima of curvature. This results in a mixed contour+region rep-

resentation that allows to relate features that are nearby on the shape but distant when con-

sidering a 1D traversal of the contour. As noted by Singh (2015), these relations are difficult

to distinguish with an analysis of the curvature function alone. As an example, consider the

two curvature extrema emphasised with red and blue dots in Figure 7.1.b, alongside with the

remaining curvature extrema (gray dots) and the CASA of the object interior (red). The two

emphasised extrema identify a region where the object “bends” and are related by one CASA

branch. The branch terminates at the convex extremum, while the other extremum is lo-

cated on the opposite side of the branch. In contrast, the same two features are seemingly

unrelated when only taking into consideration the curvature function in Figure 7.1.c. We sill

see in Chapter 10 how these semantic relations between CASA and CSFs are easy to identify

computationally and how this can be integrated into an automatic method to recover strokes

from glyph outlines.

7.1.1 Masking Problem

In order to identify CSFs, let us first recall the result proved by Leyton, which links the sym-

metry axes of an object having a smooth bounding contour to its curvature extrema (Leyton,

1987):

172 Chapter 7. Curvilinear Shape Features

(a) (b) (c)

SA Evolute Osculating circle Extremum (with SA) Extremum (without SA)

Figure 7.2: Issues with the SAT for the identification of curvature extrema. (a) the SA (red) of a self in-
tersecting trace. (b,c) Evolutes (blue) and the masking effect as demonstrated by Belyaev
and Yoshizawa (2001). In (b), the segment (dashed gray) connecting the right curvature
extremum (red circle) to its center of curvature does not intersect the SA, and the corre-
sponding osculating circle (light gray) does not intersect the outline. Thus, the SA identifies
the extremum with a branch terminating at its centre of curvature. In (c), the segment in-
tersects the SA and the osculating circle intersects the trace. Consequently, the SA branch
that would identify the left curvature extremum (orange circle) is not present on the SAT.

Any segment of a smooth planar curve, bounded by two consecutive curvature ex-

trema of the same type, has a unique symmetry axis, and the axis terminates at the

curvature extremum of the opposite type.

This result holds also for cusps and corners (Hayes and Leyton, 1989), suggesting that

given a symmetry axis (SA), it is possible to identify and locate a curvature extrema near one

axis end. However, doing so is difficult when computing the SAT to a trace as a whole, and

indeed the analysis given by Leyton is local and takes into considerations codons (Richards

and Hoffman, 1985), i.e. curve segments defined by consecutive triplets of curvature extrema.

This approach assumes that knowledge about the curvature behavior of an outline is a priori

available, which is rarely the case in practice.

Furthermore, the global SAT structure is linked to the overall geometric and topological

configuration of the trace. As an example, a handwriting trace is likely to have self intersec-

tions, which will produce symmetry axes that terminate at intersections instead of curvature

extrema (Figure 7.2.a). In addition, the global SAT is not guaranteed to identify all perceptu-

ally significant curvature extrema, as part of a contour can forbid or mask the existence of a

SA that would otherwise end at a curvature break or corner, or end at the center of curvature

of the circular arc associated to a curvature extremum.

Belyaev and Yoshizawa (2001) prove this masking effect for smooth closed curves in

terms of the evolute, i.e. the trace of the center of curvature of the osculating disks (Figure

7.2.b in blue). The evolute always has cusps corresponding with curve vertices (i.e. curvature

7.1. Introduction 173

extrema). Belyaev and Yoshizawa (2001) show that an evolute cusp corresponds with a SA

branch only when the segment going from the cusp to the associated curvature extrema does

not intersect the SA (dashed grey segment in Figure 7.2.b). When the radius of curvature of

the extremum is sufficiently large, this segment intersects the SAT and the SA branch that

would otherwise identify the extremum “disappears” (Figure 7.2.c).1 This can be interpreted

in terms of the “maximality” requirement imposed by the SAT definition, so any curvature

extrema the osculating circle of which intersects the trace will not not be part of the of SAT

and thus it will not result in a terminal SA branch.

One possible solution to avoid the masking problem is to identify features with the full

Symmetry Set (SS) (Giblin, 2000; Giblin and Kimia, 2003), which, for the case of smooth and

regular curves, has terminal disks centered at evolute cusps; however, the SS creates much

more complex diagrams where a large part of the structure is (alike the SAT) linked to global

symmetries and other geometric and topological features of the trace input. Also, the re-

trieval of the SS is much more involved, and only a small amount of attention has been de-

voted to its computation (Kuijper et al., 2006); and there is no known use in practice.

7.1.2 Solution: Recursive CSF Computation

The proposed practical solution is simple. First estimate an initial CSF set from the SAT

computed globally, or, for the case of traces with self intersections for the SAT computed

locally for a set of non-intersecting trace segments. Then compute an additional CSF set by

recursively visiting the support segments of previously identified CSFs and computing a local

SAT for each such segment. This procedure terminates when no new CSFs can be found. The

proposed solution effectively avoids limitations of both “extremes” represented by the SAT

(masking, and branches terminating at self-intersections) and the SS (complexity, difficulty

of implementation) while providing an easy to manage and complete descriptor of curvature

extrema with a representation similar to the one proposed by Leyton (1987).

In the following sections, we first introduce a more precise definition and implementa-

tion details for the SAT (Section 7.2), CSFs (Section 7.3) and CASA (Section 7.3.4). While the

basic definition of CSFs covers only absolute maxima of curvature, in Section 7.4 we show

how this definition can be extended to include absolute minima in order to cover all curva-

ture extrema types (M+,m−, M−,m+). We finally show in Section 7.5 how to reconstruct the

remaining contour segments with Euler Spirals, which identifies inflections and results in a

piecewise linear approximation of the curvature function.

1In such a configuration there is no space left for the formation of that SA branch; e.g. this is easily understood
when thinking of the equivalent grassfire propagation process to generate the SAT: there is no grass left to burn.

174 Chapter 7. Curvilinear Shape Features

(a) (b) (c)

Figure 7.3: Global and local SAT. (a) Traditional global SAT of a closed contour. (b) Local SAT for a given
CSF (dark thick contour segment centered at a convexity, bottom left). (c) Detail of the right
side of the figure and SAT in (a). (i) The green dot on the left identifies a terminal branch
starting at a fork and ending in a terminal disk (black dot). (ii) The corresponding contact
region (thick black arc) (iii) Some ribs (dashed lines) are shown, here emanating from a
regular SA point (blue dot) and a terminal point (black dot).

7.2 Symmetry axis transform
The symmetry axis transform (SAT) of a set of input traces, is the set of all maximal disks that

are tangent 2 to the trace in at least two distinct points (including limit points at corners),

without intersecting the trace set itself. The symmetry axis, SA, is the set {ρ} of all symmetric

points, the centers of the SAT disks. SA points also have an associated radius function r (ρ)

(from maximal disks). The SA is typically organised as a (directed) graph in 2D and as a

hypergraph in higher dimensions (Leymarie and Kimia, 2007), with flow directions provided

by r (ρ). The global SAT (resp. global SA), is the SAT computed simultaneously for a set of

one or more traces (Figure 7.3.a). The local SAT (resp. local SA), is the SAT computed for a

connected segment along a given trace (Figure 7.3.b).

Symmetric points part of the SA can be categorized into three types depending on their

degree, which is the number of nearest distinct trace points (Giblin and Kimia, 2003).

1. A terminal point has degree one and coincides with a corner or the center of a curvature

extremum along the outline.

2. A normal (a.k.a. regular) point has degree two.

3. A fork point has degree three or more, and coincides with an SA locus which branches

in three or more paths.

2Because we are dealing with traces that can be either open or closed, the definition of tangency is relaxed to
include endpoints, cusps and corners. To do so, we can adopt Blum’s definition of “pannormals” (Blum, 1973) and
use these to measure the shortest distance to the trace set. Pannormals do correspond to normals for smooth trace
segment, but generalise to "radials" that cover successive directions where gaps may occur for adjacent normals
where the later are not defined, for example at the end points of a curve, at isolated sample points, or at sharp
corners covering a conical range of normal directions.

7.2. Symmetry axis transform 175

Normal points can be visualized with ribs connecting them to the two nearest outline points.

A branch is a series of connected normal points that ends in either a fork or a terminal point.

Certain branches that are not bounded by a closed trace extend to infinity. A terminal branch

is a branch that ends at a terminal point. A terminal disk is the SA disk centered at a terminal

point. When a trace segment is a circular arc, the disk touches the curve over a finite contact

region that coincides with the arc. When a terminal branch ends in a corner, its terminal disk

shrinks to a point and so does the disk’s contact region.

Object outlines. When computing the SAT for the contours of an object outline, we distin-

guish between the interior and the exterior symmetry axes, respectively denoted as SAI and

SAE . The SAI lies entirely within the object’s figure, and its terminal disks coincide with pos-

itive curvature extrema or convex corners along the outline. A loop in SAI is indicative of

(surrounding) a hole in the object. The SAE lies entirely in the object’s background, and its

terminal disks coincide with negative curvature extrema or concave corners along the out-

line. A convex outline produces no SAE . The SAE of non-convex objects typically has some

branches extending to infinity.3

7.2.1 Discrete implementation

In the remainder of the thesis, we will use the term trace to refer to either open or closed

sampled segments. However, for closed segments bounding a solid 2D object, we will also

use the term “contour”. Contours are assumed to be simple (no intersections or loops such

as found in signatures or calligraphy) and consistently oriented according to the conventions

described in Chapter 2.

The input data for our method consists of a set of one or more traces, each denoted as

z(s) and parameterised by arc length s, each being representative of open or closed segments.

To treat continuous, piecewise-continuous and discrete inputs with the same framework, we

uniformly sample each trace giving a sequence of discrete points at an approximately equal

distance ∆s from each other. In the presence of corners or highly curved portions of an out-

line, other more sophisticated (adaptive) sampling strategies are possible, such as the classic

iterative application of the de Casteljau algorithm for Bézier curves or other curvature-based

techniques (de Figueiredo, 1995); but we have found that in practice a uniform sampling with

a sufficiently small ∆s works well for our use case.

In order to treat differently scaled inputs with similar thresholds, we first scale the traces

so that the height of their bounding box hext is equal to a user defined amount. We use

hext = 150 and ∆s = 1 in the accompanying examples. The choice of the height to compute

the scaling factor is motivated by the assumption that our input mostly consists of characters

or text strings that are written horizontally. In the presence of noise, we observe that it is

3In practice such branches to infinity are usually cut-off at a maximum distance or for some pre-defined bounding
box.

176 Chapter 7. Curvilinear Shape Features

convenient to slightly pre-smooth each trace by a small amount that does not degrade its

overall (perceived) shape.

7.2.2 Voronoi approximation

Many algorithms for computing the SAT exist, and the CSF identification procedure that fol-

lows can easily be adapted to any such method that operates on either curves or polylines. We

choose to rely on a Voronoi-based approximation as described by Ogniewicz and Ilg (1992)

because it is efficient, robust to quantisation noise, and well established.4 The method sup-

ports a family of regularisation methods that discard superfluous edges based on a “potential

residual” measure smin, the shortest geodesic length along the trace connecting any two sym-

metric points z(si) and z(s j). When z(si) and z(s j) are part of different traces, smin is set to

an arbitrarily large value. The examples given in this thesis use the “chord residual” regu-

larization variant, where a Voronoi edge is discarded if smin −∥∥z(si)− z(s j)
∥∥ less than a user

defined threshold. This pruning process effectively corresponds with removing Delaunay tri-

angles that do not greatly contribute to the shape boundary. An example of the use of this

approach is given in Figure 7.4 for a 2D letterform “a”.

(a) (b) (c)

Figure 7.4: Voronoi skeleton (in (b)) to the SAT (in (c)) using the method of Ogniewicz and Ilg (1992).

The SA approximation is given by the edges remaining after regularization, where ter-

minal points and forks coincide with Voronoi vertices of degree 1 and degree 3 or more, while

normal vertices coincide with the midpoints of kept Voronoi edges. The disk radii for normal

vertices are given by the Voronoi edge distance to any of its symmetric points, while the disk

radii for forks and terminals are given by the circumcircle of the corresponding Delaunay tri-

angle. The contact region of the approximated terminal disk is the shortest trace segment

connecting its nearest points z i , z j , which corresponds to a circular arc that approximates

the trace to within a small tolerance.

4I implemented the approach in Python using the QHull package (Barber et al., 1996) for robustness and accuracy.

7.3. Computing Curvilinear Shape Features (CSFs) 177

(a) (b) (c)

Figure 7.5: (a) Four successive Curvilinear Shape Features (CSFs): Each CSF is defined by (i) a local
symmetry axis, extended to reach the outline, (ii) a terminal disk, (iii) its contact region
(an arc or point), (iv) a representative curvature extremum, (v) a pair of supporting outline
segments, each shared by the adjacent CSF. The third CSF (from the left) is a corner and thus
has a contact region reduced to a point. The local symmetry axes can intersect and overlap,
unlike medial axes. (b) A configuration, such as the one that might occur in a serifed letter
E, where one CSF with a small radius (blue) is adjacent to one with a larger radius (yellow).
This results in a very short support segment shared by the two features. (c) To compute
CSF saliency, we extend the support segments to the adjacent extrema, which here helps
capture the concave area around the blue CSF. We do not use the extended segments when
identifying CSFs; doing so here would result in local symmetry axes that miss the larger
yellow CSF.

7.3 Computing Curvilinear Shape Features (CSFs)
Curvilinear shape features are trace segments that identify curvature extrema, including

sharp angles at corners.

Definition 7.3.1 (Curvilinear Shape Feature (CSF)). A CSF has five elements:

• SAi , a local symmetry axis segment extended to reach the trace;

• CC i , a terminal disk centered at the tip of SAi before it is extended;

• �CC i , the associated contact region (an arc, or a point for corners);

• ẑ i , the associated extremum of curvature, which we take as the mid-point of the con-

tact region �CC i ;

• z l hs
i (s)and z r hs

i (s), a pair of supporting trace segments on each side of �CC i , represent-

ing the CSF’s region of influence.

The index i indicates one of NC SF computed CSF: 1 ≤ i ≤ NC SF .

Each support segment of a CSF is the curve segment extending from one end of the CSF’s

contact region to the beginning of the contact region of the adjacent CSF if present, or to the

adjacent endpoint otherwise (Figure 7.5a). Adjacent CSFs always share one support segment.

178 Chapter 7. Curvilinear Shape Features

The local symmetry axis SAi of a CSF is given by the SAT of the trace segment spanned by the

CSF’s contact region and its two support segments. Because this trace segment is open, one

end of the axis extends to infinity and the other begins at the center of the terminal disk CC i .

We extend the axis with a straight segment connecting the disk center to the extremum ẑ i .

This extension of a terminal branch results in an axis that is similar to the ones produced

by the “Process Inferring Symmetry Axis” (PISA) as proposed by Leyton (1988), but avoids

numerical precision issues when dealing with discrete traces. A given arc, åCC i , may vanish

in size when coinciding with a break of curvature or sharp corner tip, becoming identically

ẑ i . We also emphasise that this definition of a CSF is more general than the older concept of a

(contour-based) “codon”: a triplet of curvature extrema (concave, convex, concave) (Richards

and Hoffman, 1985).

7.3.1 CSF Computation

As previously mentioned, the CSF set consists of the union of an initial CSF set with an addi-

tional CSF set computed with a recursive estimation of local symmetry axes. When the input

consists of multiple traces, the CSF set consists of the union of the CSFs identified for each

trace separately.

Initial CSF set: With closed contours, the initial CSF set is trivially computed from the termi-

nal disks of a contour’s global SAT. When a trace contains self-intersections, a preprocessing

step is used that splits the trace into a set of non self-intersecting segments. We currently im-

plement this with a brute-force method that traverses the trace starting from one end-point

and adds points to one segment until it intersects itself or the other end-point is reached. If a

self-intersection point is found, a new segment is started from that point on. Then, the initial

CSF set is given by the union of the CSFs sets produced by the local SATs computed for each

so-identified segment.

Additional CSF set: The initial CSF set consists of a number of CSFs connected by support

segments. As previously discussed this initial set is incomplete, since the SAT can miss im-

portant features, depending on the local configuration of a trace (Belyaev and Yoshizawa,

2001). To identify missing CSFs, we compute local SATs for each previously identified sup-

port segment, and consider the local CSFs that would be produced by its terminal branches.

For each support segment, we first discard any local CSF with a disk that fully encloses any of

the previously identified CSF disks. Then, if any of the remaining local features is salient, the

most salient one is selected as an additional CSF. This procedure is repeated until no new fea-

tures are found, and always terminates in practice after a small number of steps (usually 1 or

2). It requires a measure of CSF overlap, used to determine when one CSF encloses another,

and a measure of CSF saliency. Both measures are described next.

7.3. Computing Curvilinear Shape Features (CSFs) 179

(a) (b) (c)

Figure 7.6: Overlapping disks along a spiral segment. (a) the segment in red between the contact re-
gions of the two CSFs is a spiral. However its local medial axis has two branches producing
two terminal disks, shown in gray. (b) Without filtering, the left disk produces an additional
CSF, since it is slightly more salient than the other disk. (c) However, the disk fully encloses
the previously identified one so it is discarded. This results in the spiral segment not pro-
ducing any new CSF.

7.3.2 CSF Overlap

A spiral is a continuous curve with monotonically-varying curvature. Such a curve does not

have any curvature extrema between its ends (Leyton, 1987) and thus should not produce

an additional CSF. This can be further characterized by the Tait-Kneser theorem (Ghys et al.,

2013), which states that all osculating circles of a spiral segment with strictly positive or nega-

tive curvature, are disjoint and nested. However, because CSF analysis operates on a sampled

curve, looking for additional CSFs for an outline segment that closely resembles a spiral is

likely to produce additional terminal branches in its local SA (Figure 7.6a). These branches

can result in the detection of a CSF that does not correspond to an actual extremum (Figure

7.6b).

We discard such disks when evaluating additional CSFs by computing the degree of over-

lap δC ∈ [0,1] between any two discs as the area of the intersection between the disks divided

by the area of the smaller disk. We discard any new terminal disk if there is a pre-existing CSF

with a smaller disk radius and for which the degree of overlap for the disks is greater than a

user-defined threshold, which we empirically set to 0.98 (Figure 7.6c).

7.3.3 CSF saliency

To measure the saliency of a CSF, we first extend its support segments to the extrema of ad-

jacent CSFs, if present. These extensions are not used when finding CSFs because doing so

could lead to less useful local axes (Figure 7.5c), but they capture a perceptually important

region surrounding the CSF. We define the length, h, of the longest angle bisector coming

from the extremum for any triangle connecting the extremum and two points, one on each

extended support segment (Figure 7.7a). This usually occurs at the segment endpoints, but

curved segments can sometimes lead to a maximal length before the ends (Figure 7.7c). The

180 Chapter 7. Curvilinear Shape Features

(a) (c)(b)

0.10

0.9 6

0.07 0.8 0

0.9 7

0.8 3 0.25

0.9 6

0.090.8 0

0.9 7
0.8 6

0.00

0.25

0.50

0.7 5

1.00

Figure 7.7: Concave CSF saliency computation for the outline of a glyph: (a) Concave CSFs and their
triangles. (b) Saliencies for all concavities. Note that while saliency is somewhat correlated
with the disk radius, two CSFs with similar radii, like the two leftmost ones, can have dif-
ferent saliencies because of the surrounding trace segments. (c) Detail of a saliency com-
putation when the longest bisector h does not occur at the ends of the extended support
segments; r is the radius of the disk for the concavity.

saliency of a CSF, c, is then given by:

w(c) = e−r /h , (7.1)

with r being the radius of the associated terminal disk.

Saliency is meant to evaluate the curvature of a CSF, proportionally to the portion of 2D

space “captured” by the CSF, as approximated by the selection of h and modulated by an ex-

ponential decay. In our experiments this measure is more robust than related outline-based

saliency measures such as turning angle or “stick-out” (De Winter and Wagemans, 2008b).

We consider a feature salient if w is above a small threshold, which we set to 1×10−3, in-

formed by the results in Chapter 8 and Chapter 10.

7.3.4 Computing the CASA

We construct the interior and exterior Curvature Augmented Symmetry Axes (CASA), denoted

SAI+ and SAE+ , by combining SAI and SAE with parts of the local axes associated with CSFs.

SAI and SAE are first augmented with segments that connect each terminal vertex to the

extremum of the corresponding initial CSF. Then, we consider each additional CSF and add

a new axis segment linking the corresponding curvature extremum to the first encountered

intersection with the associated SA, thus creating a new fork (Figure 7.8). This process results,

for closed contours, in local axis segments corresponding to convexities being added to SAI+
while those for concavities are added to SAE+(Figure 7.8).

7.4. Absolute Curvature Minima CSFs with the ESAT 181

(a) (b) (c)

Figure 7.8: Retrieving CSFs and the CASA for a glyph outline. (a) SAI (blue) and SAE (red), and the initial
CSFs found at branch terminals. Note that a concave (m−) and a convex (M+) CSF are
missed because they do not occur at terminal branches of the traditional SA. (b) Local SAs
are computed over the support segments highlighted in red (concave) and blue (convex),
giving two additional CSFs. (c) The final interior (blue) and exterior (red) CASA, SAI+ and
SAE+ resulting from identifying all salient CSFs. The two additional forks are emphasized
with rings.

7.4 Absolute Curvature Minima CSFs with the ESAT
Most existing pattern recognition applications (Leymarie and Levine, 1988; De Stefano et al.,

2005) as well as perceptual studies (Attneave, 1954; Feldman and Singh, 2005) are concerned

with the identification and importance of absolute maxima of curvature. However, it has

been shown that absolute minima of curvature are also often chosen as salient points along

object boundaries (De Winter and Wagemans, 2008b). As mentioned in Section 3.8.2.3, the

analysis of Leyton (1987) takes also these points into consideration with a variant of the SAT

that he denotes as Exscribed Symmetry Axis Transform (ESAT), consisting of the loci of all

minimally circumscribed disks to a contour segment (Figure 7.9.a). The ESAT disk with the

maximal radius, is guaranteed to terminate at an absolute minimum of curvature if no other

extrema are present along the same curve segment. In Blum’s terminology the ESAT is a sub-

set of the “unblocked” symmetry axis, or SS. Indeed we can see that with the computation of

the ESAT of an ellipse, we recover its vertical SA (Figure 7.9).

7.4.1 Computing the ESAT: Farthest Voronoi Diagram

While Leyton’s construction remains theoretical and limited to smooth contours, we have

found a possible discrete implementation by considering higher order Voronoi diagrams,

that is generalisations of the Voronoi diagram which consider the distance between multi-

ple sites (Chazelle and Edelsbrunner, 1987). The order of the Voronoi diagram is given by the

number of sites considered as closest, and thus the traditional (single) “nearest neighbour”

Voronoi diagram is of order 1: each Voronoi region contains points nearest to a single input

site. The nth order Voronoi diagrams consists of regions in which points are nearest to n sites

simultaneously. For an input made of n sites, the n −1th order Voronoi diagram is called the

182 Chapter 7. Curvilinear Shape Features

Farthest (or Furthest) Voronoi Diagram (or FVD, (de Berg et al., 2008, Section 7.4)). A site will

have an associated region in the FVD iff it is part of the convex hull of the input (Biedl et al.,

2016). A contrario, sites within the convex hull have no regions in the FVD. The FVD edges

define points which are equidistant (and farthest) from two generating sites and closer to all

the others, Figure 7.9.c.

Circles centred along an edge and tangent to both sites contain all other sites. The same

holds for FVD vertices, which are equidistant to three (or more) sites. The sites define a tri-

angle, the circumcircle of which contains all the remaining sites and is centred at the FVD

vertex. Similarly to the (1st order) VD case, this defines a triangulation that is dual to the FVD

and which is known as the Farthest Delaunay Triangulation of the sites (de Berg et al., 2008)

which is often used to compute the FVD (e.g. in the QHull package (Barber et al., 1996)).

This definition suggests a similarity between the FVD and the ESAT. For contour sam-

ples, the disks centered at the FVD edges and vertices touch the curve at 2 or more samples,

and contain all the other samples of the curve in accord with the definition of the ESAT. This

similarity can also be illustrated if we consider the formation of the FVD as the outcome of

waves propagating from the input samples. Then, the edges of the FVD are the points at

which two wavefronts collide, while interacting with all the remaining wavefronts. Assuming

a constant velocity of propagation, two wavefronts meeting at a point implies equidistance

between the two generating sites at the collision point, while the interaction with all other

wavefronts implies that all the other sites are closer to the point than the two generating

sites. This corresponds to Blum’s model of “unblocked” symmetry axis (Blum, 1973) and is a

subset of the SS (Giblin, 2000).

(a) (b) (c)

Figure 7.9: (a) ESAT of the portion of an ellipse and the corresponding circumscribed circles. The blue
arrow indicates the corresponding PISA axis (or process arrow) which traces the midpoints
of the arcs defined between the generating points (Leyton, 2012). The arrow defines a com-
pression of the shape from a circular arc. (b) SAT and (c) ESAT of an ellipse. In dashed red
is shown the evolute of the ellipse, and in gray the nearest (b) and farthest (c) Voronoi dia-
grams of point samples along the ellipse boundary.

7.4. Absolute Curvature Minima CSFs with the ESAT 183

(a) (b)

Figure 7.10: Contact regions (thick black segments) for absolute maxima and minima (red dots) of two
smooth contours together with an approximation of Leyton’s 1988 “process arrows” (gray)
indicating the directions along which a supposed generative process has acted to produce
the extrema. Note that , consistently with Leyton (1988), the process arrows for the abso-
lute minima (all M− in this case) are external to the shape interior, indicating a “squash-
ing” process on the outline.

7.4.2 Identifying m+ and M− CSFs

The observations above, lead us to conjecture that a subset of the FVD approximates the

ESAT and that results similar to the nearest VD and SAT hold (Ogniewicz, 1992). However,

computing the ESAT via the FVD is subject to sensitivity issues that are similar and appar-

ently more severe than the SAT case. We leave research on a generalised solution to such

sensitivity issues for future research. However, the identification of CSFs for absolute min-

ima is feasible, since the computation is limited to support segments that can be smoothed

without corrupting otherwise important trace features.

We note that a support segment can contain an absolute minimum if its adjacent CSFs

have the same sign (or are curving towards the same side). As a first step we compute the

mean squared error (MSE) for a straight-line fit to the support segment. If the MSE is less than

a (user-specified) threshold, we can either ignore the minimum, or assume that it is located

at the center of the (nearly flat) support segment. Otherwise, we compute the FVD for that

segment. We reduce noise sensitivity issues by smoothing the segment with conventional

smoothing spline (Dierckx, 1975), again with a user defined threshold. We take as discrete

ESAT disk centers the mid-points of FVD edge that do not extend to infinity; then the disk

radii are given by the corresponding distance to the pair of (farthest) generating sites. We then

select the ESAT disk with maximum radius as the representative disk (Figure 7.9.a, largest red

circle). The disk produces a CSF if it is salient according to the same procedure as described

in Section 7.3.3, but using a lower saliency threshold of 1×10−6 for the examples given.

184 Chapter 7. Curvilinear Shape Features

A linear approximation of the local SA for the CSF can be computed with the segment

going from the disk center to the extremum. A similar approximation can be used to com-

pute a set of “process arrows”, similar to the ones defined by Leyton (1988) to indicate the

directions along which a likely generative process has acted to produce an extremum (Figure

7.10). While in Leyton’s theory these arrows correspond to the PISA, its computation in prac-

tice is highly sensitive to noise. Here we approximate the process arrows with vectors ending

at the CSF extremum ẑ i For absolute maxima (M+,m−: protrusion and indentation) each

vector is oriented opposite to the bisector of two tangents computed along the CSF support

segments z l hs
i (s) and z r hs

i (s) and starting from the endpoints of the contact region åCC i . For

absolute minima (M−,m+: resistance and squashing) each vector has the same orientation

as the the vector going from the CSF disk center to the ẑ i . This result remains mostly of theo-

retical interest, and will require future investigations to develop or test robust and sufficiently

accurate implementations. Note that we will use a similar construction for negative minima

of curvature (m−) in Chapter 10 to assist the segmentation of font outlines into strokes.

7.5 Transition Segments and Inflections
The CSF identification procedure determines a set of curvature extrema, where each CSF ap-

proximates a circular arc along the contour, via its contact region. In the following step we

reconstruct the contour segments z i (s) not covered by contact regions with transition seg-

ments consisting of either straight lines or Euler spirals.5 This is performed with the simpli-

fying assumption that the segments are either straight or characterised by a linearly varying

curvature function.

The transition segments can identify inflections (Figure 7.11.a) and result in a piecewise-

linear approximation of the curvature function (Figure 7.11.b). We will use this representa-

tion in the following chapter to efficiently recover ΣΛ parameters from a trace. At the same

time, this kind of approximation is similar to Euler spiral decompositions used for curve fair-

ing applications (Baran et al., 2010; McCrae and Singh, 2009) and it is potentially useful for a

similar task.

7.5.1 Fitting Euler Spirals

Recall from Chapter 4 that an Euler spiral, parameterized by arc length, is computed in terms

of the Fresnel integrals C (u),S(u) (equation (4.10)) and evaluated with:

q(u) = (x(u), y(u)) = (C (u),S(u)) , (7.2)

where u can vary from minus to plus infinity, and where the origin, (0,0), corresponds to

u = 0, which is the inflection point for the spiral; note that u is then identically the (signed)

5This use of Euler spirals is also inspired by the work of Leyton who studied contour regions between curvature
extrema of opposite sign by using “bi-spiral” segments (Leyton, 1987).

7.5. Transition Segments and Inflections 185

(a)

0 50 100 150 200 250 300 350
−0.1

0.0

0.1

0.2

0.3

0.4
(b)

curvature
abs maxima
transition spirals
abs minima
inflections

Figure 7.11: Reconstruction and curvature function approximation of a B-spline contour. (a) The con-
tour reconstructed as a combination of circular arcs (CSF contact region) and Euler spiral
segments. Black segments have an inflection (green circles). (b) The features overlaid as
segments on the curvature of the input path. We can observe that the method gives a good
approximation of the curvature function in correspondence with each extrema, as well as
an estimate of the region along which curvature is approximately constant. The curvature
estimation is less precise for points with high absolute curvature, due to the (relatively low)
sampling frequency of the input and to a smoothing effect given by pruning of the skeleton
with the chord residual. An adaptive sampling strategy would improve the fit.

arc length parameter for the spiral curve. In our application, an Euler spiral segment to be

fitted to the data is defined between an initial (u = u1) and a final (u = u2) parameter values.

If the values alternate in sign, then we have a segment with an inflection (at u = 0). Similarly

to Chapter 4, such a segment can be sampled in an efficient manner using the method of

Heald (1985), which results in Ñ samples along the segment going from q(u1) to q(u2).

In order to fit an Euler spiral segment to one of the segments from our input trace, we

first compute approximate tangent directions along the trace, for a given support segment

z i (s), i.e. in correspondence with the initial and final points of the segment under examina-

tion. This allows to rapidly compute a first estimate of the spiral segment’s initial and final

parameter values using the same method by Levien (2009a) that we used in Chapter 4.

However, the tangent estimates are likely to be unreliable in the presence of noisy input

data, and thus we proceed to refine this initial fit with a least squares optimisation based on

the classic Gauss-Newton method. Our method consists then in three additional steps. First,

we linearly transform the given support segment, z i (s), such that its end points match those

of the computed spiral segment in its canonical form. Second, we modify the canonical form

186 Chapter 7. Curvilinear Shape Features

of the Euler spiral, by introducing a scaling factor a and a rotation by an angle ω with:

q(u) =
a cos(ω)C1(u)−αsin(ω)S1(u)

a sin(ω)C1(u)+αcos(ω)S1(u)

 , where (7.3)

C1(u) =C (u)−C (u1) and S1(u) = S(u)−S(u1) . (7.4)

Note that the (initial) canonical form is for a = 1 and ω = 0. Third, and finally, we proceed

with the minimisation:

min
u1,u2,a,ω

1

2

Ñ∑
j=1

∥ q[j]− z i [j] ∥2 , (7.5)

where q[j] and z i [j] both denote Ñ equally spaced samples with a sampling index [j], in the

former case for the spiral segment q(u) between u1 and u2, and in the later case along the

input support segment z i (s).

Figure 7.12: An Euler spiral, its inflection point (circle) and a Euler spiral segment (thick black).

7.5.1.1 Subdivision

The method above does not perform well when the support segment between two contact

regions approximates spiral segments with a relatively high total turning angle (Figure 7.13a).

This rarely happens when processing handwritten traces, but it can occur with other kinds of

vector input.

Ideally, this could be solved by using a more flexible primitive to describe transitions,

for example using the general aesthetic curve method of Miura (2006). Another less efficient

method to overcome this issue is to subdivide a segment when the fitting error is greater than

a given threshold. However, with the assumption that a support segment is always a spiral,

we can efficiently determine if subdivision is necessary by computing the sum

∣∣φ∣∣=∑
s

∣∣φ(s)
∣∣

of the absolute turning angles
∣∣φ(s)

∣∣ along the support segment z i (s) under consideration

and where the absolute value is necessary because the segment may contain an inflection.

We then recursively subdivide a segment in half if
∣∣φ∣∣ is greater than a user define threshold

7.6. Discussion 187

(a) (b)

Figure 7.13: Subdivision of support segments for fitting Euler spirals. (a) The contour segment consists
of two concatenated spiral segments with a high number of revolutions, and it produces
two CSFs (red and blue) near the extremities. The support segment between the two CSFs
is not an Euler spiral, which results in a poor fit. (b) Recursively subdividing the support
segment results in a precise fit consisting of multiple transition segments.

(Figure 7.13b). We find that a threshold of π4
5 works well for the use case of ΣΛ parameter

reconstruction discussed in the next chapter, and we use the same threshold in the other

examples given. We optionally smooth the support segment first using a convolution with a

Gaussian, to avoid potential issues that can arise due to noise.

7.5.2 Inflections

The presence of inflections can be identified by checking if the two CSFs adjacent to a transi-

tion segments have absolute maxima of curvature of opposite sign. If this is the case we dis-

tinguish between three sub-cases. Similarly to the case of minima, we first check if the sup-

port segment z i (s) is sufficiently straight, by testing if it can be approximated with a straight

line with linear least square fit. If the fit MSE is less than threshold, we label the segment

as straight and use its midpoint as representative of the inflection. Otherwise, if the support

segment consists of a single transition segment, the location at which the spiral parameter

u = 0 gives the inflection position. If a support segment is subdivided into multiple spirals,

we check if successive spiral parameter pairs u1 and u2 of any given spiral have different

signs, in which cases we can identify an inflection again with u = 0. If none of the spirals

have alternating signs, we repeat the procedure for adjacent spirals using the parameter u1

of the first and the parameter u2 of the second. If the parameters have alternating signs, the

inflection is located at the point where the two spirals meet.

7.6 Discussion
The CSF analysis procedure is written in the Python programming language, and relies on

the QHull library (Barber et al., 1996) to efficiently compute 2D Voronoi diagrams used for

the SAT recovery. For inputs consisting of closed contours (Figure 7.14a), the procedure takes

188 Chapter 7. Curvilinear Shape Features

(a)

1000 2000 3000
Points

0.5

1.0

1.5
Ti

m
e

(s
ec

on
ds

)

50 150 250 350 450
Height

(b)

1000 2000
Points

0

10

Ti
m

e
(s

ec
on

ds
)

50 150 250 350 450
Height

Figure 7.14: CSF computation performance for (a) closed contours and (b) open traces (with self-
intersections) using a constant sampling distance of ∆s = 1, increasing bounding box
height and thus an increasing number of trace samples.

in average 0.5 seconds for the predefined bounding box height hext = 150 (Section 7.2.1).

For inputs consisting of open traces (Figure 7.14b), the procedure is considerably slower and

it takes in average 2 seconds for the same predefined bounding box height. This is due to

the time complexity of the brute-force intersection method (Section 7.3.1), which could be

improved with a sweepline-based approach (de Berg et al., 2008). At the same time, the in-

tersection code is also written in Python, which is especially slow when performing loops

(Behnel et al., 2011). As a result, a C/C++ implementation of that part of the code is likely to

produce a significant performance gain.

We have tested our method on various inputs ranging from object silhouettes, font out-

lines to handwriting and graffiti traces. In the current implementation, the discrete Voronoi

diagram is highly sensitive to circular or nearly-circular outlines, which can give results that

vary depending on the scale, sampling frequency (Figure 7.15b) or quality (Figure 7.15c) of

the input. In our experiments, this potential weakness does not have a serious adverse effect.

Still, a robust method for circle, ellipse, and oval detection, such as the Hough transform

(Manzanera et al., 2016), could identify these symmetric features, and be combined with our

approach. Our method can also function with relatively noisy inputs, as long as an appropri-

ate Voronoi SAT regularisation threshold is chosen (Figure 7.15.c). Currently, this threshold

must be set by a user, but an automatic method is a useful avenue of future research.

We perform an approximate evaluation (Figure 7.16) of our method on stimuli taken

from the dataset developed by De Winter and Wagemans (2004). The dataset contains the

contours for 260 “everyday” object silhouettes (Snodgrass and Vanderwart, 1980), together

with salient points along the object contours selected by approximately 40 participants per

stimulus. Following De Winter and Wagemans (2004; 2008b), we compute a frequency for

7.6. Discussion 189

(a)

(b)

(c)

Figure 7.15: From left to right, CSFs for a circle, and two ellipses with increasing major axis size. (a)
With high quality (hext = 150) contour samples, the location of the CSFs for the circle is
not well defined, but the extrema for the ellipses are identified. (b) Slightly decreasing the
bounding box height (hext = 100) modifies the CSFs for the circle (left), but the extrema
of the ellipses remain stable. (c) With the addition of high-frequency noise, a relatively
stable computation of CSFs for an ellipse is still possible, by increasing the Voronoi SAT
regularisation threshold. However, the circle CSFs become unstable and their location and
number depends on high frequency contour details.

each consecutive contour sample along an object outline. Each frequency is the number of

times participants selected a contour sample as salient. We then compute a frequency-based

saliency value for each contour sample by convolving the frequencies with a Gaussian. This

will smooth out the noise potentially produced by participants selecting different but nearby

contour samples. Finally we visually compare the frequency-based saliency values with the

saliency (Section 7.3.3) computed for absolute minima and maxima CSFs along the same

contour.

190 Chapter 7. Curvilinear Shape Features

Frequencies CSF saliency

Sample #

0

1

Frequencies CSF saliency

Sample #

0

1

0.0

0.2

0.4

0.6

0.8

1.0

Figure 7.16: Qualitative comparison of salient points labelled by participants in the large-scale exper-
iment of De Winter and Wagemans (2008b), and curvature extrema identified with CSFs.
The top row shows the (smoothed) frequencies with which participants selected points
along the outline (De Winter and Wagemans, 2008b) next to the saliency values computed
according to the measure in Section 7.3.3. Both measures are normalised and colored ac-
cording to the heat-map displayed on the right. Below each object, plot of the normalized
frequency values for each points (grey), and the normalized saliency for the CSFs along the
object outline displayed as red (absolute maxima) and blue (absolute minima).

Observing the plots in the second row of Figure 7.16 shows that the location of the CSF

extrema along the outline (blue and red circles) generally corresponds with peaks in the

smoothed frequency plot (gray). However, the normalized CSF saliency tends to be lower

than the normalized frequency-based saliency. This is especially true for absolute minima

of curvature (m+, M−, blue circles) and suggests room for improvement in the proposed

CSF saliency measure, at least for the case of absolute minima. In future studies, we plan

to perform a more rigorous analysis of the correlations between our saliency measure and

the choices of participants, comparing it to other measures such as turning angle (Feldman

and Singh, 2005; De Winter and Wagemans, 2008b) and in order to optimise our measure so

it maximises consistency with experimental data.

7.7 Conclusion
In this chapter we have developed the notion of Curvilinear Shape Feature (CSF), a mixed

boundary and region representation that is based on the computation of local symmetry

axes. CSFs reconstruct contours or traces in terms of circular arcs and spiral segments and

identify salient curvature extrema, together with a precise estimate of their associated center

and radius of curvature. Each CSF is also paired with two support segments, that describe the

region of influence of the feature and facilitate the estimation of local contour features such

as tangents near concavities. For the case of closed contours, CSFs can be used to derive

7.7. Conclusion 191

the CASA: an augmented version of the SAT which has branches terminating at all curvature

extrema and relating CSFs to the topology of an object.

We will use a number of these properties and representations to drive the methods pre-

sented in the following chapters. For example, in the next chapter we will use the extrema

and the transition segments to derive a motor plan and circular arcs that reconstruct a trace

in terms ofΣΛ parameters (Figure 7.17). The support segments and the CASA will be useful in

Chapter 10 (Figure 7.18) to relate CSFs with a measure of good continuation and to segment

2D font outlines into potentially overlapping and crossing strokes.

The implementation of CSFs discussed in this chapter opens up a number of avenues

of future research. As previously mentioned in Section 7.5, CSFs allow a piecewise-linear

approximation of the curvature function, which is potentially useful for curve-fairing appli-

cations (Baran et al., 2010; McCrae and Singh, 2009). CSFs also capture salient curvature

extrema, so using saliency to determine the level of detail of a curve fairing procedure is an

interesting research avenue. In the discussion of Section 7.6, we have seen that CSFs capture

salient points that are consistent with the ones that are chosen by humans. However, our

current choice of a saliency measure in Section 7.3.3 is principally driven by an evaluation

of its performance during the implementation stage. A systematic comparison of different

saliency measures with the data collected by De Winter and Wagemans (2008b) is of interest

from a perceptual standpoint, but also useful to potentially improve the performance of our

measure. Finally, we have seen in Section 7.4 how the FVD can be used to identify absolute

minima of curvature and to produce a discrete symmetry axis representation that is similar

to Leyton’s ESAT (Leyton, 1987). While our proposed solution works in practice, an in-depth

analysis of the relations between the ESAT and FVD would be not only useful to improve the

robustness of our method, but also interesting from a theoretical perspective.

192 Chapter 7. Curvilinear Shape Features

Figure 7.17: CSFs and transition segments of tag traces from the Graffiti Analysis database (Roth et al.,
2009). Top row: CSFs and inflections. Absolute curvature maxima and minima are de-
noted with red and blue circles respectively. Inflections with blue crosses. Second row:
Trace reconstruction with circular arcs (thick red and blue arcs) and Euler spiral transition
segments (alternating colors).

7.7. Conclusion 193

(a)

(b)

Figure 7.18: (a) Interior and exterior SAT for a number of glyphs. (b) The corresponding CSFs.

Chapter 8

From Geometry to Kinematics with CSFs

This chapter is based on a collaboration between myself, Prof. Frederic Fol Leymarie, and

Prof. Réjean Plamondon at Polytechnique Montréal (Canada), and is mostly based on a con-

ference publication (Berio et al., 2018b) and a book chapter (Berio et al., 2020b).

In this chapter, we exploit the structure provided by CSFs to recover a plausible gener-

ative movement from the geometry of an input trace. By plausible, we mean a generative

movement which can approximate closely that which is produced by the human hand, or

even be mistaken as such. The method operates on inputs that can be represented as ordered

sequences of points, such as digitised traces of handwriting, graffiti, drawings or the curves

of vector art inputs. The procedure relies on a geometric analysis of a trace to automatically

produce a motor plan and a set of kinematic parameters, the combination of which results

in a kinematic realisation that reproduces the trace. This effectively extends the previously

discussed concept of “style as kinematics” to trace inputs and enables meaningful variations

and stylisations that would be difficult to achieve by relying on the trace geometry only. In

particular, the kinematic parameters are expressed in terms of the ΣΛ model, thus enabling

the user-interaction, rendering, animation and parametric variations techniques already dis-

cussed in Chapter 4 to trace inputs. The ΣΛ model is particularly well suited for this task,

since it describes both a plausible movement and the resulting trace with a sequence of

well defined primitives: ballistic sub-movements each characterised by a set of parameters

that can be systematically modified to generate meaningful variations and stylisations of the

trace.

A number of methods already exist that recover ΣΛ parameters from digitised traces of

handwriting (O’Reilly and Plamondon, 2008; Plamondon et al., 2014; Fischer et al., 2014; Fer-

rer et al., 2018). However these methods rely on an analysis of the input velocity and are

aimed at biometric or pattern recognition purposes. For the scope of this thesis, our aim is

196 Chapter 8. From Geometry to Kinematics with CSFs

rather perceptually and artistically driven: to infer a physiologically plausible motion from

an input trace, where the kinematics of the input may be unavailable, such as when using

vector graphics inputs, or may be degraded or unreliable due to the poor quality of a digi-

tisation device, such as when using low cost tablets or trackpads. As a result, we purposely

ignore any pre-existing kinematics encoded by the input, in order to seamlessly handle any

vector input in which only the sequential ordering of points may be available. We also choose

this approach with the future aim of combining our method with one that recovers tempo-

ral information from bitmap images such as the one presented by Plamondon and Privitera

(1999).

In the following sections, we first describe how the previously identified CSFs and tran-

sition segments can be transformed into a series of circular arcs (Section 8.1) that are used

to drive the reconstruction procedure (Section 8.2). The arcs determine an initial estimate

of a motor plan and a corresponding set of ΣΛ parameters (Section 8.2.1), which are then re-

fined to accurately reconstructs the input trace (Section 8.2.2). Section 8.3 demonstrates how

this reconstruction can be used to create variations and stylisations of a trace with the same

methods previously described in Chapter 4 and with extensions to these methods that further

exploit the reconstruction procedure. These variations can be used to generate and render

graffiti in a Procedural Content Generation (PCG) setting. Finally, in Section 8.4 we use the

reconstruction procedure to compare the ΣΛ model to MIC and to the minimum jerk (MJ)

model , in particular to its path-constrained formulation (Todorov and Jordan, 1998), which

is also capable of inferring physiologically plausible kinematics given an input trace.

8.1 Segmentation method
The proposed trajectory reconstruction method exploits the prior feature analysis of the in-

put z(s) (Chapter 7), and thus takes as its input a set of CSFs and a set of Euler spiral transition

segments. The CSFs consisting of a set of NC SF terminal disks, CC i , circular arc contact re-

gions, åCC i , curvature extremum loci, ẑ i , and NC SF +1 support segments z i (s). Adjacent CSFs

share one support segment (z r hs
i (s) = z r hs

i+1(s)) and the first and the last CSFs have one unique

support segment each (z lhs
1 (s) and z r hs

NC SF
(s)). Each support segment is approximated by one

or more Euler spiral transition segments as described in Section 7.5.1.1.

8.1.1 Circular arc decomposition

On the basis of this information, the goal is then to segment the entire trace, z(s), with a

series of best fitting geometric primitives. For generality, in this chapter we shall focus on

circular arc primitives, since these are the basis for the conventional formulation of the ΣΛ

model. However, the method can easily be extended to Euler spirals for the case of theωEΣΛ

model (Section 4.2.2). The trajectory segmentation in terms of a series of circular arcs is

executed with a systematic method, that starts from the Euler spiral transition segments and

8.1. Segmentation method 197

approximates each such segment with one or two best fitting circular arc(s), as a function of

the presence of an inflection along the spiral segment.

For the reconstruction task, we consider an inflection along a spiral valid only if the

corresponding support segment has not been labelled as straight (Section 7.5.2) and the ratio

of the spiral parameters min(u1,u2)/(u1 +u2) is greater than a user defined threshold, which

empirically set to 0.2 in the accompanying examples. If the ratio is less than the threshold, we

discard the inflection as a near degenerate case, the inflection being very close to one spiral’s

end point.

Depending on the presence of a valid inflection, each Euler spiral segment results in one

or two circular arcs. The internal angle of the circular arcs is easily estimated by integrating

the curvature of the spiral and distinguishing between 3 cases.

(a) For the case of two arcs, the internal angles are given by u1|u1| and u2|u2| (Figure 8.1a).

(b) In the case of a degenerate inflection, we use the same method to fit a single arc and

choose only the parameter with the greatest absolute value (|u1| or |u2|) and conse-

quently higher curvature (Figure 8.1b).

(c) When no inflection is present (Figure 8.1c) the internal angle is given by:

|(u2|u1|−u1|u1|)|sgn(u1).

In summary, we have that the trace is now represented by a sequence of NC SF contact

circular arcs, �CC i , with intermediate transition Euler spiral segments each with or without

(a) (b) (c)

−50 ∘

70 ∘
70 ∘ 70 ∘

Figure 8.1: Decomposing Euler spirals (stippled cyan) into arcs. (a) two arcs delimiting an inflection
(grey cross). (b) One segment with a degenerate inflection resulting in a single arc. (c) One
without an inflection and resulting in a single arc.

198 Chapter 8. From Geometry to Kinematics with CSFs

an inflection. Each spiral segment is then mapped to either a pair of arcs (with a separating

inflection) or a single arc.

Figure 8.2 shows the results of (i) identifying (here, five) curvature maxima, ẑ i , followed

by (ii) fitting (five) Euler spirals, and (iii) finding (two) inflections and corresponding circular

arcs. This approximate reconstruction of the original trajectory in the form of circular arc

segments, is related to the method originally proposed by Li et al. (1998), but with the fol-

lowing main three differences: (i) We have found experimentally that our method to identify

curvature maxima is more robust — in particular as it does not rely on an explicit a priori es-

timation of the curvature signal. (ii) We use Euler spirals to fit intermediate data which gives

a simpler and more robust method to identify inflections. (iii) We explicitly obtain contact

circle arcs, åCC i , which results in a more accurate reconstruction of the original trace (Figure

8.2.c and d).

This representation is now ready to be exploited in the next section to iteratively recon-

struct ΣΛ parameters from the input trace, z(s).

8.2 Iterative Reconstruction of ΣΛ parameters
Given the previous trace segmentation derived from identified CSFs and Euler spiral transi-

tion segments, we now have the necessary information to describe how we reconstruct the

input trajectory with an approximate associated kinematics given only information about its

(static) sampled geometry. Hence, we will be able to seamlessly process on-line handwriting

data as well as vector art in which only the sequential ordering and coordinates of trace sam-

ples is required. The method is a development and improvement over our prior efforts (Berio

and Leymarie, 2015; Berio et al., 2017a). We re-emphasise that, although a number of meth-

ods exist for the accurate reconstruction ofΣΛ parameters from digitised traces (O’Reilly and

Plamondon, 2008; Plamondon et al., 2014; Fischer et al., 2014), these require as input the

explicit kinematics of the original trajectory.

8.2.1 Initialisation: Features, Sub-movements, Initial Targets

The initial virtual targets (i.e. the motor plan) consists of two types of feature points, or fea-

tures for short: from CSF analysis (i) recovered curvature extrema, ẑ i , and from Euler spiral

analysis and circular arc decomposition (ii) inflections or points where multiple circular arcs

meet. We can either directly use these loci or find their nearest neighbors, z(ŝi), on the orig-

inal input trace, z(s), which leads to slightly more accurate reconstructions. We follow the

later approach in results reported hereafter.

An initial set of M submovements is defined from only those circular arcs derived from

the Euler spiral segment fitting; i.e. we do not generate submovements for each contact cir-

cular arc, åCC i , associated to each ẑ i . Furthermore, given the ΣΛ modelisation, each åCC i is

likely to coincide with a curved trace segment that is produced by the time superposition

8.2. Iterative Reconstruction of ΣΛ parameters 199

Circles

Circle arcs

Inflections

(a) (b)

(c) (d)

Salient points

Osc. circle

Input

Spirals

Contact region

Figure 8.2: (a) Feature extraction based on CSFs, followed by (b) Euler spiral fitting, and (c) circular
arc decomposition of a sample from the UJI handwritten character dataset (Llorens Piñana
et al., 2008). The arcs in red indicate the intersections (with the original trace) of the circles
of curvature corresponding with salient points. (d) Demonstrative example of least-squares
fitting of circular arcs to the segments defined between consecutive salient points. Not con-
sidering the contact region results in less precise reconstruction of the input (compare (d)
with (c)).

of two ballistic submovements, independently of the sub-movement curvilinear geometry.

As a result, not considering these segments when estimating the ΣΛ circular arcs avoids the

potential over-estimation of the corresponding curvature parameters δi (Figure 8.2.d).

The circular arcs we use — all derived from Euler spiral segments — give us a set of M

internal angles θ̂i , centers c(θ̂i) and radii r (θ̂i). These arcs are delimited by M + 1 feature

points z(ŝi) with {ŝ0, ŝM } indicating the initial and final trace points. When modeling a closed

trace or contour, we randomly pick one feature point as both the start and end positions.

Each feature point corresponding to a CSF is also associated with an osculating circle with

radius r (ŝi), curvature κ(ŝi) and center c(ŝi), as indicated by the corresponding terminal disk

CC i . The corresponding contact region �CC i covers a portion of z(s) that is not covered by any

of the previously identified circular arcs and at which the curvature κ(ŝi) is approximately

200 Chapter 8. From Geometry to Kinematics with CSFs

(a) (b) (c)

Figure 8.3: ΣΛ parameter reconstruction using features from CSFs and Euler spiral derived arcs. (a)
First guess (in black) of the stroke parameters and motor plan from features. (b) Recon-
struction of the input after iterative refinement steps. (c) Iterative refinement steps. The
initial motor plan has targets corresponding with the features along the input (large red cir-
cles). At every iteration, the targets are shifted (small blue circles) in order to reduce the
distance between keys along the generated trajectory (cyan circles) and the features of the
original trace.

constant (Figure 8.2). Note that, in the vicinity of curvature extrema for which the trajectory

is smoother, we obtain a larger radius of curvature (as expected), as well as a larger contact

region.

An initial estimate of the trajectory is given by a motor plan with vertices p i = z(ŝi) and

corresponding curvature parameters δi = θ(ŝi). The time overlap parameters are initially set

either (i) to ∆ti = 0.5 if a feature point ŝi−1 corresponds to an absolute maximum of curvature

in z(s) , or (ii) to a user defined minimum ∆t− otherwise — i.e. for inflection points, absolute

curvature minima, or where any two subdivided transition segments meet. Similarly to the

interactive use-case (Chapter 4) and for the sake of simplicity, the remaining parameters σi

and µi are fixed to a user configurable value, with the assumption that they describe typical

properties of the neuromuscular system of a writer. The initial trajectory estimate is likely to

differ from the original, z(s), and to be much smoother due to the initial lognormal stroke

overlaps (Figure 8.3.a).

8.2.2 Iterative scheme: Keys, Max speeds, Moving Targets

To improve the reconstruction, we adopt an iterative refinement scheme (Figure 8.3.c) in

which we adjust the curvature and time overlap parameters together with the target posi-

tions in order to minimise the difference between the reconstructed trajectory x(t) and the

input trace z(s). At each iteration, we rely on the estimation of a series of M −1 key points

{τi }NS
i=1, which approximate the initial feature point loci and are computed identically to Sec-

tion 4.4.2.1. Recall that such key points indicate the time occurrence at which the influence of

8.2. Iterative Reconstruction of ΣΛ parameters 201

Figure 8.4: Key points (orange circles) and max speed points (red crosses) overlaid on (left) the trace
and (right) speed profile of a trajectory made of two primitives. Note that the time occur-
rence of the “max speed points” coincides with the peaks of the lognormals (blue), but does
not necessarily coincide exactly with the maximum trajectory speed. However, this approx-
imation is simple and has proven to be sufficient for our reconstruction use case.

one lognormal exceeds the previous, which approximately corresponds to curvature extrema

along x(t) (Figure 8.4).

In addition to key points, we also compute M maximum speed points, or max speeds for

short, {γi }NS
i=1, which indicate the approximate time occurrence of the maximum speed for

each stroke (Figure 8.4); this is explicitly obtained by the mode of the corresponding lognor-

mal: t0i +exp(µi −σ2
i).

8.2.3 Underlying observations

The iterative refinement scheme is designed based on three observations:

Observation 1. The time parameter ∆ti is proportional to the curvature κ(τi) at the time of

the corresponding key point. Thus, a higher value of ∆ti will decrease the amount of overlap

of successive lognormals. This will result in a lower speed and higher curvature κ(τi) at the

time occurrence of the key. Since we have a good approximation of the curvature κ(ŝi) in

the original trajectory, the relation between the two can be exploited in order to adjust ∆ti

proportionally at each iteration. We observe that changes in ∆ti are not linearly related to

changes in the curvature κ(τi) at the corresponding key. In order to compensate for this, we

assume a 1/3 power relation (Viviani and Schneider, 1991) which has often been observed

in human movement and particularly holds for elliptical portions of the trajectory (Plamon-

don and Guerfali, 1998a), which is often the case near keys. The reasoning is that given the

relations:

∆t ∝ κ and ∆t ∝ 1/v ,

202 Chapter 8. From Geometry to Kinematics with CSFs

where v denotes speed, we have the proportions relating desired and generated curvature

and velocity:

ρκ = κ̂/κ and ρv = v̂/v .

As a result, given the power law (Viviani and Schneider, 1991) v = κ−1/3 and because velocity

and ∆t are inversely proportional, we finally get the relation:

ρκv = v/v̂ = (κ/κ̂)−1/3 = (κ̂/κ)1/3 .

Observation 2. Moving targets play a role similar to control points in spline analysis. Shift-

ing a target p i in a given direction will cause the generated key x(τi) to move in a similar

direction. As a result, shifting the target p i along the vector z(ŝi)− x(τi) will decrease the

distance between successive generated keys and original features (Figure 8.3.(c)).

Observation 3. The distance Di between successive targets p i and p i−1 will influence the

curvature of the resulting stroke. Augmenting this distance will increase the radius of curva-

ture of the circular arc defined by the parameter δi and will result in a decrease of curvature

for the stroke. While the trajectory tends to depart from the circular arc near the keys at

t = τi due to the smoothing effect of the lognormal time overlap, it tends to pass closer to

the circular arc at t = γi where the amplitude of the lognormal is maximal. As a result, we

use this locus to evaluate the deviation from the desired arc θ̂i and correct the parameter δi

accordingly.

Out of these three observations, we define each iteration of our method to consist of the

following ordered steps:

∆ti ←∆ti +λ∆(ς(∆̂ti ,∆tmi n ,∆tmax)−∆ti) , (8.1)

δi ← δi +λδ(δ̂i −δi) and (8.2)

p i ← p i +λp (z(ŝi)−x(τi)) . (8.3)

In the above formulation, we experimentally set the value of three damping parameters: λ∆ =
0.1, λδ = 0.1 and λp = 0.5; these permit to avoid excessive adjustments at each iteration. The

target time offset parameter for each iteration is computed by assuming a 1/3 power relation

to curvature and is given by:

∆̂ti = ς
(
(κ(ŝi)/κ(τi))1/3 ,∆t−,∆t+

)
, (8.4)

which is restricted to a user specified range [∆t−,∆t+] by using a logistic function:

ς(x, a,b) = a + b −a

1+exp
(
−20

(
x − a+b

2

)) ,

8.2. Iterative Reconstruction of ΣΛ parameters 203

with the multiplicative factor 20 empirically set to produce a steep logistic curve.

We observe that this restricted range improves convergence of our method and permits

to apply smoothing effects to the trajectory during the reconstruction step (examples are

given in Section 8.3).

The desired internal angle of an arc is given by:

δ̂i = 4tan−1
[

h

a
tan

(
δi

4

)]
with (8.5)

a =∥ p i −p i−1 ∥ and (8.6)

h = (
r (θ̂i)− ∥ x(γi)−c(θ̂i) ∥)sgn(θ̂i) , (8.7)

where the term h determines the amount to shift the curvature parameter δi by comparing

the radius of the circular arc θ̂i , initially fitted to the input, to the distance between its center

and the lognormal max speed point x(γi).

8.2.4 Stopping Criteria, SNR

A few different stopping criteria for the iterative scheme are possible, depending on the user

needs. The simplest — and most practical for experimenting with the approach — is to let

the user define an overall maximum iteration. Other more sophisticated criteria we have ex-

perimented with include: (i) let keys reach each associated CC i or åCC i ; (ii) minimise the

overall distance between the generated, x(t), and the input, z(s), traces, by either selecting

a threshold value or letting the algorithm reach a local minimum; (iii) optimise the quality

of the reconstruction by maximising an error criterion such as the SNR (defined next). We

have found in practice the latter SNR-based criterion gives a good compromise between re-

construction quality and computational complexity.

Because we do not take into consideration the kinematics of the input, we evaluate the

quality of the reconstruction using the Signal to Noise Ratio (SNR) computed between the

reconstructed and input trajectory. While this could be done by uniformly sampling the two

trajectories at a constant distance step, this will result in a propagation of errors along the

reconstructed trajectory, which leads to unreliable SNR measurements. To overcome this

problem, we exploit our initial estimation of features z(ŝi) in the input and the segmentation

given by the keypoints τi of the reconstructed trajectory, x(t), and uniformly sample m seg-

ments for the original and generated trajectory, where the j th point for the i th segment are

respectively denoted as z i , j and x i , j and the mean of an input segment is denoted by z̄ i . The

trajectory SNR is then:

SN R = 10log10

∑
i
∑

j
(
z i , j − z̄ i

) · (z i , j − z̄ i
)∑

i
∑

j
(
z i , j −x i , j

) · (z i , j −x i , j
) , (8.8)

204 Chapter 8. From Geometry to Kinematics with CSFs

(a)

Arcs
Virtual targets
Original
Sigma Lognormal

(b)

Figure 8.5: Reconstruction of vector input initially built with piecewise Bézier curves. Our method re-
constructs the (originally only guaranteed to be C 0 continuous) input with smooth kine-
matics given by the ΣΛ model. (a) First guess of the parameters from features. (b) Recon-
struction of the input after iterative refinement steps.

which easily generalises to the case of multiple disconnected trajectory segments, such as

when the writer lifts-up their pen or brush.

We tested the iterative refinement on different inputs ranging from vector traces with no

a priori kinematic information (Figure 8.5), to online data — including the Graffiti Analysis

database (Roth et al., 2009) (Figures 8.6, 8.7, 8.8 and 8.9) and the UJI handwritten character

dataset (Llorens Piñana et al., 2008) (Figure 8.3) — and it consistently produces visually ac-

curate reconstructions of the input. We observe that, while fluctuations may appear during

iterations, the refinement scheme consistently and rapidly converges towards a reduction of

the error between the input and the generated trajectories and an increase in SNR (equation

(8.8)).

The iterative scheme can be applied in a batch manner, in which all the ΣΛ parameters

for all strokes are updated at each iteration, or similarly to the iDeLog framework (Ferrer et al.,

2018) by traversing the trajectory in an incremental manner and adjusting pairs of strokes

ordered in time. In our experiments both approaches present similar convergence properties

and produce reconstructions with similar SNR.

8.3 Editing, Rendering and Stylistic Variations
The output of the reconstruction procedure, extends all the functionalities demonstrated in

Chapter 4 to arbitrary traces. This enables a user to fine-tune the rendering results or to ap-

ply subsequent modifications to the trajectory by editing the target positions and the prim-

itive parameters through a CAD-like interface. The resulting kinematics reproduce natural

human-like movements that can be exploited to create primitive animations of the input as

well as to generate smooth motion paths for virtual characters or even humanoid robots (Be-

8.3. Editing, Rendering and Stylistic Variations 205

(a) (b)

(c)

Figure 8.6: Reconstruction of a graffiti signature "JANKE" from the Graffiti Analysis database (Roth
et al., 2009). (a) The reconstructed trajectory, subdivided into segments for comparison
(color coded), overlaid on the original trace (light grey). The short grey segments mark the
errors and correspondences between uniformly distanced samples for each trajectory seg-
ment. (b) Plot of SN Rt for each iteration of the iterative optimization scheme. (c) The speed
profiles of the original (light grey) and reconstructed (dark grey) trajectories, scaled for com-
parison.

rio et al., 2016).

8.3.1 Smoothing and Fairing.

As seen in Chapter 4, smoothing (or its opposite, “sharpening”) effects can easily be achieved

by globally scaling the ∆ti parameters. Combined with parameter reconstruction, this re-

sults in a procedure that bears similarities to computer graphic approaches for curve fair-

ing or neatening (Thiel et al., 2011; McCrae and Singh, 2009) as well as curve stylisation ap-

proaches (Lang and Alexa, 2015; Lu et al., 2012). In particular, the Euler spiral decomposition

step of the reconstruction method is similar to some previously proposed methods (Baran

et al., 2010; McCrae and Singh, 2009), which exploit the decomposition of an input curve into

Euler spiral segments to remove discontinuities and guarantee C 2 continuity in the output.

206 Chapter 8. From Geometry to Kinematics with CSFs

Figure 8.7: Additional examples of graffiti tag reconstructions (with data from the Graffiti Analysis
database (Roth et al., 2009)) together with the corresponding SNR plots.

8.3. Editing, Rendering and Stylistic Variations 207

Figure 8.8: Parametric variations of a reconstructed graffiti instance from the Graffiti Analysis
database (Roth et al., 2009). Top left, the original reconstruction (black trace) overlaid with
30 variations. Note that variability is higher in proximity of smooth segments of the trajec-
tory. The remaining traces are randomly perturbed samples, with the corresponding (per-
turbed) action-plan in red.

208 Chapter 8. From Geometry to Kinematics with CSFs

Figure 8.9: Example of content generation. Tags reconstructed from the GML (Graffiti Markup Lan-
guage (Roth et al., 2009)) format, and rendered with kinematics based brushes over a wall
texture. Original on the left, reconstructed version on the right.

In our case, we instead rely on the properties of the ΣΛ model, which ensures the resulting

reconstruction is smooth and infinitely differentiable (C∞).

8.3.1.1 Combining variations and iterative refinement

As noted in Chapter 4, simply scaling the ∆ti parameters (Figure 8.10.a) can quickly result

in a loss of structure and legibility. Another method to mitigate this effect is to run a second

step of the iterative refinement procedure with a lower value of ∆t−,∆t+. As a result, we

can achieve a smoothing effect while still preserving the structural similarity of the input, as

provided by the original features. Variable degrees of smoothing can then be achieved by

interpolating the ΣΛ parameters between the original reconstruction and the smoothed one

with a parameter α ∈ [0,1] (Figure 8.10.b).

More flexible stylisation effects can also be achieved with a similar approach, for exam-

ple by constraining all stroke curvature parameters δi to a user-specified value (Figure 8.10.c)

and then running the iterative refinement withλδ = 0, hence not further affecting the param-

eters. While we use linear interpolation for the parameters ∆ti ,δi , we observe that these are

not linearly related to the target positions. While this relation deserves further analysis in

future studies, we achieve satisfactory results by specifying a power ofα for interpolating tar-

gets (Figure 8.10.d) and observe experimentally that a power of 7 works particularly well for

our use case (Figure 8.10.b & c).

8.4 Comparison: constrained minimum jerk model and MIC
TheΣΛ reconstruction method discussed in this chapter infers the kinematics of a trajectory,

which closely approximates the geometry of a given input trace. This procedure is conceptu-

ally similar to the path constrained minimum jerk model (Todorov and Jordan, 1998), which

produces a minimum jerk trajectory that interpolates a given sequence of passage points. If a

sufficient number of points are selected along an input trace, the resulting trajectory closely

8.4. Comparison: constrained minimum jerk model and MIC 209

(a)

(b)

(c)

(d)

Figure 8.10: Comparison of smoothing and stylisation methods. Row (a), smoothing by global scaling
of the time offset parameters∆ti . Row (b), smoothing by using the parameterα to interpo-
late between the ΣΛ parameters of two reconstructions with different values for ∆t+. Row
(c), stylisation effects achieved by interpolating between the ΣΛ parameters of two recon-
structions, where the second is performed with user specified values of δi . Row (d), effect
of different powers of α= 0.75 used to interpolate the virtual target positions between the
two reconstructions used in row (b); The examples in row (b) and (c) use a power of 7.

210 Chapter 8. From Geometry to Kinematics with CSFs

(a) (b) (c)

0.0 0.2 0.4 0.6 0.8 1.0

Normalised time

0.0

0.5

1.0

N
or

m
al

is
ed

 sp
ee

d

(d)
MIC
� �
MJ

Trajectory Motor plan segments/arcs Targets/via-points Minimum jerk trajectory Source trace (MIC)

Figure 8.11: Comparison of ΣΛ and path-constrained MJ reconstructions of a trajectory generated with
MIC. (a) MIC trajectory (black) generated for the motor plan in red. The motor plan was
specifically chosen to emphasise the parameterisation problem. The trajectory in magenta
is the one that would be predicted by the minimum jerk model for the same motor plan.
(b) ΣΛ reconstruction (black) of the MIC trajectory (green) and the resulting motor plan.
Here the motor plan is visualised with vertices connected by circular arc segments. (c)
Minimum jerk reconstruction (black) of the MIC trajectory (green). The red points are the
locations of CSF extrema and inflections computed along the MIC trajectory during the ΣΛ

reconstruction procedure. (d) Comparison of the speed profiles for the ΣΛ (blue) and MJ
(red) reconstructions together with MIC (dashed-black). The speed profiles are normalised
and aligned in order to facilitate visual inspection.

approximates that trace. When the passage points correspond to the vertices of a motor plan,

the same method produces a minimum jerk trajectory according to the original formulation

of Flash and Hogan (1985).

In Chapter 5 we have seen that a third order interpolating MIC trajectory obeys a jerk-

minimising cost function, but the resulting trajectory differs from the one predicted by the

minimum jerk model. This difference is due to the uniform parameterisation assumption

made in MIC, which, similarly to splines (Lee, 1989), results in a trajectory that does not nec-

essarily interpolate the motor plan at curvature extrema. This can be considered a limitation,

because the converse is a property that is especially desirable for user interaction with inter-

polating curves (Yan et al., 2017).

8.4. Comparison: constrained minimum jerk model and MIC 211

The possibility to reconstruct ΣΛ parameters from geometry allows us to compare these

three models, in order to gain more insights on their relationships and to inform possible

avenues of future work. The top row of Figure 8.11 shows a third order interpolating MIC

trajectory and its reconstruction with the method described in this chapter (Fig. 8.11b) and

with the path-constrained minimum jerk model (Fig. 8.11c). For the MIC trajectory in Fig-

ure 8.11a, we specifically choose a motor plan that emphasises the parameterisation problem

and the difference between the trajectory produced by MIC (black) and the one produced by

the minimum jerk model (magenta). TheΣΛ reconstruction is done with a default time over-

lap between lognormals of ∆ti = 0.2 and fixed µi and σi , given by intermediate parameters

Aci = 0.1 amd Ti = 0.3. The reconstruction results in a different motor plan from the one used

to produce the MIC trajectory in Figure 8.11a. The constrained minimum jerk reconstruction

in Figure 8.11c is done by choosing a series of passage points along the MIC trajectory, cor-

responding to the CSF extrema computed during the ΣΛ reconstruction procedure, together

with the inflections (two in this case).

Both the ΣΛ and constrained minimum jerk methods produce a close approximation

of the MIC trace. However, it is especially interesting to visually compare the speed profiles

produced by the three methods (Fig. 8.11d). To perform the comparison, we normalize the

speed profiles and align them by first computing the location of speed minima and then shift-

ing and scaling the profiles horizontally, in order to minimise the distance between minima

in a least squares sense. This reveals that the MIC speed profile and the minimum jerk one

are nearly identical. Indeed, the MIC formulation in the example produces a minimum jerk

trajectory, but not the one predicted by the minimum jerk model (Flash and Hogan, 1985) for

the motor plan given in Figure 8.11a.

By construction, the ΣΛ model produces speed profiles consisting of asymmetric bell

shapes, which differ from the symmetric ones predicted by the minimum jerk model (c.f.

Figure 3.1a, Chapter 3). However, the relative spacing between speed minima in the ΣΛ and

minimum jerk remains very similar. This suggests that the procedure used by the ΣΛmodel

to produce smoother trajectories, i.e. increasing the time overlap between adjacent lognor-

mals, results in an approximate isochrony that is similar to the one that is predicted by the

minimum jerk model through an optimisation procedure. This relation is worthy of further

investigation, especially in sight of finding efficient solutions to the parameterisation prob-

lem that affects MIC similarly to splines. Furthermore, the high derivatives of the ΣΛ model

can be computed efficiently and at significant locations such as key points (corresponding to

curvature extrema). This suggests that it should be possible to implement a similarly efficient

constrained optimisation procedure that adjusts the ΣΛ parameters in order to minimise the

square magnitude of jerk or some other higher derivatives of position.

212 Chapter 8. From Geometry to Kinematics with CSFs

8.5 Conclusions

In this chapter, we developed and explained a systematic method to reconstruct ΣΛ param-

eters from solely a static geometric trace (left by handwriting or drawing gestures). The

method is capable of producing an accurate geometric reconstruction of the input, while

inferring plausible kinematics underlying its generation on the basis of just an ordered se-

quence of points as an input. We achieved our goal of a plausible reconstruction of the kine-

matics by designing a method exploiting a notion of Curvilinear Shape Features (or CSF) to

incrementally adjust the temporal and spatial parameters of the ΣΛ model. The method

consistently produces accurate (> 15 dB SNR) reconstructions of the input, while provid-

ing flexibility for the use of additional constraints that can be exploited in order to generate

interactive stylisations and variations. In the following chapter we will see how the same

reconstruction can be used to implement an example-driven stylisation procedure.

The reconstruction method relies on an ad-hoc procedure that iteratively reduces the

error between the input trace and the reconstructed one. In future work, it would be interest-

ing to exploit the availability of higher order derivatives of the ΣΛmodel in order to develop

solutions using constrained optimisation methods with stronger convergence guarantees.

Another interesting future line of work is to develop more sophisticated methods of setting

the ΣΛ parameters µi and σi , which are currently tuned manually and kept constant. This

shall require to explore in depth how the inferred kinematics relate to human data and are

perceived by human observers.

We started an experimental evaluation of the ΣΛmodel in the context of an ongoing se-

ries of experiments conducted by the Department of Psychology at Goldsmiths. We used a

procedure similar to the one described in Section 8.4 to compare the ΣΛ and minimum jerk

models to a uniform speed parameterisation of the same trajectory. We then asked partici-

pants to rate animations of movements generated with the three models, expecting that the

movements generated with the ΣΛ and minimum jerk model would be perceived as more

natural and aesthetically pleasing then the movements generated with the uniform model.

The experimental results are still under investigation and a manuscript is being prepared

with details and analysis at the time of the writing of this thesis. In summary, the partici-

pants found the biologically feasible movements (ΣΛ and minimum jerk) more aesthetically

pleasing and natural than the uniform ones. In addition, naturalness and aesthetic ratings

were positively correlated, suggesting that movement naturalness is a predictor of how beau-

tiful the movement appears. While the results showed no significant difference between the

aesthetic and naturalness rating of the ΣΛ and minimum jerk model, the difference was also

non-significant between the ΣΛ and uniform model. This makes the results difficult to in-

terpret, and emphasises the need for further investigation on the choice of fixed parameters

when performing the ΣΛ reconstruction.

8.5. Conclusions 213

Examining Figure 8.11d shows that the speed profiles produced by theΣΛ and minimum

jerk model are very similar. However, with the given selection of µi ,σi parameters, theΣΛ re-

construction procedure gives a slower movement at the beginning and end of the trajectory.

This emphasises an intrinsic difference between the minimum jerk andΣΛmodel, where the

former model makes predictions on the global kinematic regularities of a movement (i.e. the

minimisation of jerk), while the latter makes predictions at the planning level and on how

kinematics emerge through the superposition of submovements. The minimum jerk model

predicts a unique optimal trajectory given a series of passage points, while the ΣΛmodel can

produce many different kinematic realisations given the same motor plan. As we have seen

in Chapter 4, and as we shall see in the next chapter, this property becomes advantageous

when generating variations and stylisations of a trajectory. However, this also requires mak-

ing parameter choices when reconstructing a trajectory from a trace (such as the constant

values of µi ,σi or the value of∆t−), which ultimately impact the inferred kinematics and can

influence the perceived naturalness of the resulting movement.

Chapter 9

Example-driven stylisation with the Sigma

Lognormal Model

This chapter is based on a collaboration between myself, Prof. Frederic Fol Leymarie, Memo

Akten, Prof. Réjean Plamondon and Prof. Mick Grierson. The neural network architecture

and code has been principally designed and developed by Memo Akten. Initial results were

presented at the MOCO conference in London in June 2017 (Berio et al., 2017a). Section 9.3.1

presents initial results of ongoing work that stems from the useful advice of Prof. Luca Citi at

University of Essex.

In the previous chapter, we have seen how CSFs allow us to separate a structural and

kinematic component from a trace in terms of a motor plan and the corresponding ΣΛ pa-

rameters. This separation enables the formulation of an example-based stylisation proce-

dure that is conceptually similar to ones that have been proposed for the tasks of stylising

vector paths (Hertzmann et al., 2002; Lang and Alexa, 2015) and images (Hertzmann et al.,

2001; Gatys et al., 2015). Such methods consider stylisation as a bi-level transfer problem

commonly referred to as “style transfer”: given two input patterns (paths, images), generate

a third one with the structure or “content” of the first but with a style that is visually simi-

lar to the second. The implementation of such a method clearly requires a method that can

distinguish from a given input pattern, a descriptor of style and one of structure.

In the proposed framework of “style as kinematics” the inputs to the system are the

traces of instances of writing, calligraphy or graffiti. We represent (i) “structure” with a mo-

tor plan, and (ii) “style” with a set of kinematic parameters that determine the fine evolution

of movements that follow the same motor plan. The kinematic parameters are expressed

with the ΣΛ model, and the previously described reconstruction procedure allows us to re-

cover these parameters and a motor plan from one or more input traces. To implement an

216 Chapter 9. Example-driven stylisation with the Sigma Lognormal Model

example-driven stylisation method, we first learn a mapping between the motor plan (struc-

ture) and the ΣΛ parameters (kinematics) for one or more given inputs and use this mapping

to predict the parameters for another motor plan, which may be provided by a user or au-

tomatically extracted from another trace. The underlying hypothesis is that (i) the param-

eterisation of the ΣΛ model is sufficiently rich to capture features of a hand-style that can

be transferred between different motor plans, and (ii) that since glyphs and written traces

usually consists of repetitive patterns, it should be possible to learn the mapping from a very

small number of training examples.

As a proof of concept for the implementation of this procedure, we learn the mapping

with a recurrent neural network (RNN), and more specifically a recurrent mixture density net-

work (RMDN) (Graves, 2013) with a long short-term memory (LSTM) architecture (Hochreiter

and Schmidhuber, 1997). Recent developments have shown that these RNNs are capable

of modelling complex sequential (or time-ordered) data such as text (Sutskever, 2013), im-

ages (Gregor et al., 2015), dance (Crnkovic-Friis and Crnkovic-Friis, 2016) and handwriting

(Graves, 2013). While many existing deep learning approaches aim to minimise the use of

“hand-crafted features”, we hypothesise that for our task it is beneficial to formulate a mid-

level mapping that exploits our knowledge of the specific problem domain. Our rationale is

that human handwriting (and related artistic processes) results from the orchestration of a

large number of motor and neural subsystems, and that movement is arguably planned us-

ing some form of higher level mapping, possibly in the form of movement primitives which

are then combined in a syntactic manner similar to language (Richardson and Flash, 2002;

Flash and Hochner, 2005). For this particular study, we represent this mapping as ΣΛmove-

ment primitives, which abstracts the complex task of trajectory formation from the neural

network, which is then left with focusing on the higher level task of movement planning.

We demonstrate this approach on digitised traces, which are recorded by a user with a

pen-tablet or downloaded from a large online graffiti motion database (Roth et al., 2009). As

a preprocessing step, we first reconstruct the traces, and then operate on the inferred motor

plans andΣΛparameters. Compared to point-sequences, this representation is more concise

(i.e. with low cardinality) and meaningful, such that every representative locus is now a high

level segment of the trajectory. Such a representation is also resolution independent, and

can easily be manipulated prior to and after training. In addition, the ΣΛ parameterisation

can be exploited to augment the training data for the RNN with new samples that mimic the

variability one might observe when an artist draws the same form multiple times. We exploit

this capability to augment our training data and learn from very small amounts of original

input datasets — as small as a single training example.

9.1. Method 217

9.1 Method
The ΣΛ reconstruction procedure recovers a motor plan P and a set of kinematic parameters

ΘP which closely approximate a set of input traces Z with a kinematic realisation P . This

allows us to construct an example-based stylisation procedure with a relation similar to the

one defined by Hertzmann et al. (2002) for curves:

P : P :: Q : Q , (9.1)

i.e. an example motor plan P is to its kinematic realisation P as a second motor plan Q is to

another kinematic realisation Q. Given P , P and Q we seek to generate Q.

Assuming that P and Q are generated with (ΣΛ) kinematic parameters ΘP and ΘQ the rela-

tion becomes

P : (P ¯ΘP) :: Q :
(
Q ¯ΘQ

)
where P and ΘP are reconstructed from Z , Q is given, and the ΣΛ parameters ΘQ are un-

known and must be inferred so that they visually satisfy relation 9.1. To infer ΘQ , we train

a model that learns a mapping f between P and ΘP , so that f (P) ≈ ΘP and the unknown

parameters are given by f (Q) =ΘQ .

9.1.1 Example-based input

The input to the system consists of one or more examples recorded with a digitiser device,

such as a tablet or mouse, where each example consists of a set of discrete traces Z . As a first

step, we preprocess this input data and reconstruct the traces in the form of ΣΛ primitives,

so each example is approximated with a motor plan P and a set of kinematic parameters

ΘP . We use this intermediate representation to train an RMDN model that learns to predict

the ΣΛ parameters corresponding to a given motor plan. We call this procedure kinematic

parameter prediction or KPP (Section 9.1.4). In order to train on small datasets, we augment

the preprocessed data by introducing artificial variability at the ΣΛ parameter level. In the

following sections we describe the steps that constitute our system and then demonstrate its

use with a number of examples in Section 9.2.

9.1.2 Kinematic parameters

Each motor plan P is represented as an initial position p0 followed by a sequence of virtual

targets p1, · · · , p M . Each pair (p i−1, p i) corresponds to a ΣΛ sub-movement aimed at p i and

characterised by a pair of kinematic parameters (∆ti ,δi). When a motor plan consists of mul-

tiple paths, we can either (i) consider each path as a different motor plan, or (ii) concatenate

all paths into one motor plan, so that the segments between the end of one path and the be-

ginning of the next correspond to “in the air” parts of the movement where the writing tool

does not touch the surface. When this is the case, we set the kinematic parameters ∆i and δi

218 Chapter 9. Example-driven stylisation with the Sigma Lognormal Model

to predefined values (0.5 and 0 in the examples given). Doing so results in a model that also

takes into account the order in which strokes are drawn, and, as we will see next, this choice

impacts the predictions made by the model. The remaining ΣΛ parameters Aci and Ti (or

accordingly µi ,σi) are fixed to the predefined values chosen during the reconstruction step,

with the same underlying assumption that these parameters represent properties specific to

a writer, and given that their effect on the shape of a trajectory is negligible.

9.1.3 Data augmentation

So far, we have seen how the the ΣΛ parameterisation can be exploited to produce realistic

variations of a trajectory for stylisation and procedural generation purposes. Now, we exploit

this property to generate an augmented training set, which allows the system to be trained on

very few original training samples. A similar approach has been used for pattern recognition

purposes in other studies and applications using the ΣΛ model (Fischer et al., 2014; Diaz-

Cabrera et al., 2018; Leiva et al., 2017).

Given a dataset of N training samples, we use the same procedure described in Chap-

ter 4 to randomly perturb the target positions and parameters of each sample Np times. This

results in a new augmented dataset of size N+N×Np where legibility and trajectory smooth-

ness is maintained across samples. Note that this would not be possible on the original in-

put dataset alone, as perturbations for each data point would eventually result in a noisy

unrecognisable trajectory. We then also apply random similarity transforms (rotation and

uniform-scaling) to the samples, which we observe is beneficial in improving the robustness

to variations of scale and rotation in the inputs.

9.1.4 Kinematic Parameter Prediction (KPP)

Given a motor plan P , we would like to predict the corresponding kinematic parameters ΘP .

We train a model to learn the probability distribution of the kinematic parameters {∆ti ,δi }

for the virtual target p i , conditioned on the virtual targets and kinematic parameters leading

up to that target, with:

Pr(∆ti ,δi |∆p1:i ,u1:i ,∆t(1:i−1),δ1:i−1),

where∆p i ∈R2 denotes the relative position displacement between the i th virtual target and

the next, ui ∈ {0,1} denotes the pen-up state (0, pen down, 1, pen up). When desired, the

pen up parameter allows us to treat a motor plan consisting of multiple paths as a single

sequence.

Note that the distribution is conditioned on the kinematic parameters of the previous

sub-movements and virtual targets (∆t(1:i−1),δ1:i−1,∆p1:i−1) as well as the current virtual tar-

get ∆p i . Conceptually this represents a writer that knows their next target, is aware of the

dynamic history of their movement so far, and wants to know what kinematic parameters

to use for the next target. We also considered an alternative model conditioned only on the

9.1. Method 219

virtual targets, independent of the previous kinematic parameters, i.e. Pr(∆ti ,δi |∆p1:i ,u1:i),

which conceptually represents a writer unaware of the dynamic history of their movement.

In our preliminary studies we found this model to not perform as well.

9.1.4.1 Model details

We implement our model using Recurrent Mixture Density Networks (RMDN) with the LSTM

architecture. An MDN (Bishop, 1994) models and predicts the parameters of a Gaussian Mix-

ture Model (GMM), that is a set of means, covariance and mixture weights. An RMDN (Schus-

ter, 2000) is a combination of an RNN with an MDN, and outputs a unique set of GMM pa-

rameters at each time-step, allowing the probability distribution to change with time as the

input sequence develops.

kinematic paramers (stylisation)

virtual targets (structure/geometry)

Figure 9.1: Network architecture with two recurrent hidden layers. At each time-step i the network
outputs the parameters of a GMM which is sampled (denoted by ∼) and fed as input at the
next time-step.

The input to the model is given by a vector ξi = [∆p>
i ,ui ,∆t(i−1),δi−1] ∈ R5 where all

elements, except for ui , are normalised to zero mean and unit standard deviation. The de-

sired output is y i = [∆ti ,δi] ∈ R2 which consists of the normalised kinematic parameters for

the i th sub-movement (Figure 9.1). The probability distribution of the output is expressed

as a bi-variate GMM with diagonal covariance, which improves training efficiency, since

computing the probability distribution function does not require a matrix inversion. This

results in a network architecture with an output dimension of 6K where K represents the

number of components of the GMM. The GMM components are represented as a vector

[µ̂i ∈ R2K ,σ̂i ∈ R2K , ρ̂i ∈ RK ,π̂i ∈ RK] where the corresponding GMM parameters are given

220 Chapter 9. Example-driven stylisation with the Sigma Lognormal Model

by (Graves, 2013):

µk
i = µ̂k

i : means for k th Gaussian, µk
i ∈R2 ,

σk
i = exp(σ̂k

i) : standard deviations for k th Gaussian , σk
i ∈R2 ,

ρk
i = tanh(ρ̂k

i) : correlations for k th Gaussian, ρk
i ∈ (−1,1) ,

πk
i = softmax(π̂k

i) : mix weight for k th Gaussian ,
K∑
k
πk

i = 1 .

(9.2)

At each i th time step, the probability of the kinematic parameters y i , given the input

vector x i , is:

Pr(y i |ξi) =
K∑
k
πk

i N (y i |µk
i ,σk

i ,ρk
i) . (9.3)

9.1.4.2 Training

We use a maximum likelihood objective that minimises the negative log-likelihood (a.k.a.

surprisal (Feldman and Singh, 2005)) of generating the input samples. Given a training set of

input-target pairs (ξi , ŷ i), we define the loss for a single training example with:

Js =−
L∑
i

ln
(
Pr

(
ŷ i |ξi

))
, (9.4)

where L is the length of the sequence. The total loss is given by summing Js over all training

examples.

We use a form of Truncated Backpropagation Through Time (BPTT) (Sutskever, 2013)

whereby we segment long sequences into overlapping segments of maximum length L. In

this case, long-term dependencies greater than length L are lost, however with enough over-

lap the network can effectively learn a sliding window of L time-steps. We shuffle our training

data and reset the internal state after each sequence. We empirically found an overlap factor

of 50% to perform well, though further studies are needed to confirm the sensitivity of this

choice.

We use dynamic unrolling of the RNN, whereby the number of time-steps to unroll to

is not set at compile time, in the architecture of the network, but unrolled dynamically while

training, allowing variable length sequences. We train using the Adam optimizer (Kingma

and Ba, 2014) with the recommended hyper-parameters. To prevent exploding gradients we

clip these using the L2 norm as described by Pascanu et al. (2013) and experimentally set the

threshold to 5.

We use LSTM networks (Hochreiter and Schmidhuber, 1997) with input, output and for-

get gates (Gers et al., 2000), and dropout regularization (Pham et al., 2014). We have employed

9.2. Results 221

Figure 9.2: Dynamic parameters generated over user specified virtual targets (in red), using two sepa-
rate models, each trained on a single example (with data augmentation x8000). Each row
shows: (a) the training example, (b) the user provided virtual targets and (c) the trajec-
tory predicted by the corresponding model. Training examples: top row is from the GML
database (Roth et al., 2009), bottom row was drawn using a tablet.

both a grid and a random search (Bergstra and Bengio, 2012) on various hyper-parameters

in the ranges: sequence length (5. . .128), number of hidden recurrent layers (1. . .3), dimen-

sions per hidden layer (64. . .1024), number of Gaussians (5. . .20), dropout keep probability

(50%.. .95%) and peepholes {with, without}. We experimentally settled on an architecture

of 2 recurrent layers, 20 Gaussians, dropout keep probability of 90% and no peepholes. The

layer and sequence sizes depend on the use cases, which are discussed next.

9.1.4.3 Prediction

To predict the kinematic parameters for an input motor plan, we first scale the input so its

size approximately matches the size of the motor plans used for training. Given a qualita-

tive evaluation of the results, we do so by uniformly scaling the input motor plan so that the

median distance between consecutive virtual targets is equal in the input and the training

set. The prediction is then made by translating and scaling the resulting offsets ∆p i by the

same amounts used to transform the training data to zero mean and unit standard devia-

tion. Parameter prediction is executed iteratively, starting from the first offset, stochastically

sampling the GMM generated by the network (equation (9.3)) and then feeding back to the

network the next offset together with the sampled parameters.

9.2 Results

Given a motor plan, the KPP model (Section 9.1.4) is used to produce different stylisations

that resemble the dataset it has been trained on. The input motor plan can be either (i) di-

rectly defined by a user or (ii) reconstructed from a set of input traces.

222 Chapter 9. Example-driven stylisation with the Sigma Lognormal Model

P

:

P

::

Q

:

Q

: :: :

: :: :

Figure 9.3: Relation (9.1) implemented with KPP models trained on a single example, and with one se-
quence per stroke. The columns marked with P , P , Q, Q, respectively denote the example
motor plan, reconstructed trajectories followed by the user provided motor plan and the
stylisation given by the model. Column P overlays the prediction of the model (black) over
the original reconstruction (in cyan) used as training data (the overlaps are nearly perfect).
The stylised trajectories are generated with adjusted virtual targets, as described in Section
9.2.1.3.

9.2.1 User defined virtual targets.

In the following application, a user provides an input motor plan and the system predicts

various smooth trajectories, the stylisation of which varies according to the kinematic pa-

rameters learned from a given training set. The input motor plan consists of a sequence of

sparse poly-lines, and it can be specified interactively, or loaded from a vector file. While the

training procedure is performed offline, sampling the trained model runs at interactive rates.

As a result, the user is able to view the results and interact in real time, for example by drag-

ging the virtual targets around with a mouse, and seeing the final smooth trajectory update

instantaneously with desired styles. The training set can contain one or more examples of

target styles.

9.2.1.1 Single training examples

As mentioned previously, we can use data augmentation to train a KPP model on as few as

a single initial training example and the model is able to consistently predict kinematic pa-

9.2. Results 223

P

:

P

: :

Q

:

Q

Figure 9.4: KPP model trained on a series of multiple strokes. The model predicts order dependent
features such as the “wiggle” in the first stroke (grey circles in Q and Q).

rameters in that style (Figure 9.2). We observe that a maximum sequence length of L = 15

works well for this use case. We explore two different methods to specify the training data for

the network: with each stroke stored in its own sequence, or with all strokes concatenated in

the same sequence (with pen up movements).

One stroke per sequence: We train the network on a set of sequences, where each sequence

is corresponds to one (perturbed) stroke from the training example. When using this model

to predict kinematic parameters for an input motor plan, the predictions should be made

separately for each stroke in the input (Figure 9.3). The resulting model is independent of the

order in which strokes are specified, which can be advantageous for example when consider-

ing examples and input motor plans for different writing systems. We find that this approach

works well with a relatively small network size (64 units per layer) and a data augmentation

of np = 3000, which also results in a relatively fast training procedure when compared to the

subsequent methods.

Multiple strokes per sequence: In this case, we train the network on a set of sequences,

where each sequence contains all the perturbed strokes from the training example, concate-

nated in the same order that is specified in the example. This approach also takes into ac-

count the order in which the example strokes are specified. For input motor plans that are

structurally similar to the training example, this can result in prediction that captures global

features, such as the “wiggle” that is being reproduced in Figure 9.4. However, the sensitivity

to stroke ordering is high, resulting for example in a completely unrecognizable reconstruc-

tion of a training example when the order of the strokes is varied. This suggests a lower gen-

eralisation power of this model with respect to the previous one (Figure 9.5). This approach

also requires a larger network size (400 units per layer in the given examples) with the same

data augmentation of np = 3000, resulting in a considerably slower training procedure.

9.2.1.2 Priming, multiple examples and variability

When a model is trained with a single stroke per sequence, it is possible to control the styli-

sation by priming the model so it favours predictions for a specific stroke (Graves, 2013).

224 Chapter 9. Example-driven stylisation with the Sigma Lognormal Model

(a) (b) (c)

Figure 9.5: Reconstruction of the training example with a KPP model trained with multi-stroke se-
quences (a-b) and one trained on single stroke sequences (c). (a) The multi-stroke sequence
model correctly reconstructs the training example, when its motor plans are fed in the orig-
inal order (color coded). (b) However, shuffling the order of the input results in a strong
degradation of the reconstruction. (c) This issue does not affect a model trained on se-
quences consisting of a single stroke.

Priming is achieved by first feeding the model the sequence corresponding to a stroke, before

feeding it the virtual targets which we wish to make a prediction on. This mode of operation

can be selected by a user to fine tune the predictions made by the model. For example in

Figure 9.6, top row, we force the first strokes of the training and input trajectories to be simi-

lar, and thus reproduce the “wiggle” in the training example without the need to train a less

efficient order-dependent model.

We also can train a KPP model on a dataset that contains multiple styles. In this case

we can use priming to select which example in the training set determines the stylisation

(Figure 9.7). We observe that while a shorter sequence length is sufficient for models trained

on a single style, a longer one (e.g. 64) is necessary for this use case, to help it “remember”

the primed style across more virtual targets.

Because the model predicts parameters by stochastically sampling a learned distri-

bution, different predictions and consequent variations of the generated trajectory can be

achieved by choosing different seeds for the pseudo-random number generator (Figure 9.8).

9.2.1.3 Virtual target adjustment.

By definition, the virtual targets of a ΣΛ motor plan are imaginary points at which ballistic

sub-movements are aimed. Consequently, these points are often not located along the tra-

jectory, especially in correspondence with smooth trajectory portions where two adjacent

lognormal primitives have a large degree of overlap (low ∆t). When the training examples

contain many such smooth portions, the model predictions can result in trajectories that

have a degraded structure not sufficiently similar to the one of the input motor plan. This

issue can be easily avoided, by following the same iterative key point adjustment procedure

described in Section 4.4.2.1. A number of examples in this chapter have been computed with

3 iterations and λp = 0.25.

9.2. Results 225

P

:

P

: :

Q

:

Q

: : : :

: : : :

Figure 9.6: KPP model trained on a single stroke sequence and primed on a specific stroke (emphasised
in red for the motor plan P and in black for the trajectory P).

Figure 9.7: Dynamic parameters generated over user specified virtual targets (in red) using a single
model trained on 4 examples (with data augmentation x2000). Each trajectory has been
generated by priming the network with the corresponding example. Training examples: top
row are from the GML database (Roth et al., 2009), bottom row were drawn using a tablet.

226 Chapter 9. Example-driven stylisation with the Sigma Lognormal Model

Figure 9.8: Variations generated by varying the random number generator seed prior to sampling a
model trained on multiple examples.

(a) (b) (c)

Figure 9.9: Kinematic style transfer of user drawn traces. (a) Letters of the alphabet drawn by a user
with a tablet (bottom) and corresponding motor plan (top, red). We train two KPP models
((b) and (c), top), which predict new kinematic parameters for the motor plan of the original
traces and generate the trajectories below.

9.2.2 Kinematic Style Transfer

The same methods described above can be extended to arbitrary input traces, either drawn

by a user or taken from an existing online dataset. Given such an input trace, we first use the

ΣΛ parameter reconstruction method to extract a series of virtual targets and corresponding

kinematic parameters. We then discard the reconstructed kinematic parameters and replace

them with the ones predicted for the corresponding virtual targets by a given model, iden-

tically to the previously demonstrated examples. The result is a kinematic analogue of style

transfer procedures such as the ones described for images by Gatys et al. (2015), which we

call “kinematic style mixing”. The resulting output is structurally similar to the input trace,

but possesses kinematic and geometric features derived from the training examples.

We test the method with a simple sequence of letters drawn by a user with a tablet (Fig-

ure 9.9.a, bottom) and observe that, depending on the example used to train, or prime the

network, the method produces clearly different and readable stylisations of the input (Fig-

ure 9.9.b,c). On the other hand, the quality of the results strongly depends on the structural

complexity of the input and on the perceptual similarity of the reconstructed virtual target

sequence to the input path. In some more complex examples, the initial readability of the

9.3. Discussion 227

+

(a) (b)

Figure 9.10: Less satisfactory case for the stylisation of a complex tag. (a) Left: drawn trace to be
stylised, Middle: training example, Right: Output of the model, applying the style of the
training example to the user drawn trace. (b) Result after iterative adjustment of the vir-
tual targets.

input can be lost and the quality of the resulting stylisation is not satisfactory, or in general

difficult to evaluate qualitatively (Figure 9.10.a).

To improve the structure and recognisability of the stylised traces, we can again use an

iterative procedure that adjusts the virtual target positions. In this case, we re-run the iter-

ative refinement step used to reconstruct the input, but replacing the kinematic parameters

of the original reconstruction with those predicted by the model. We then run the iterative

refinement procedure by adjusting only the virtual target positions (with λδ = 0 and λ∆ = 0)

and setting λp by a user configurable amount (λp = 0.5 and 3 iterations in Figures 9.10.b and

9.11).

This procedure brings the curvature extrema of the stylised trajectory and the ones of

the input closer together, which, based on known results in visual perception (De Winter and

Wagemans, 2008a), should improve recognition. Figure 9.11 shows different combinations

of inputs (blue column) and examples (red row) that are used to predict new kinematic pa-

rameters for the motor plans of the inputs. The examples along the diagonal use the same

example for the motor plan and kinematic parameters, which results in a reconstruction of

the original trajectories (in blue). While the virtual target adjustment step generally improves

readability of the stylised trajectories, the examples in the first row (in black) show that this

is not always the case, which emphasises the sensitivity of the method to the structure of the

input and suggests that further research is needed to improve the quality of the results.

9.3 Discussion

We developed and tested the system on a commodity laptop. With this configuration, train-

ing the model on a single example (64 units, np = 3000) takes approximately 4 to 5 minutes.

More complex models take significantly longer to train. The prediction and adjustment steps

run at interactive frame rates.

228 Chapter 9. Example-driven stylisation with the Sigma Lognormal Model

Structure

K
in

em
at

ic
s

Figure 9.11: Kinematic style transfer between different examples of tags reconstructed from the GML
database (Roth et al., 2009). The blue column shows the input trajectories that are used
to recover motor plans, and the red row shows the examples that are used to stylise the
recovered motor plans. In black are different stylisations resulting from combinations of
the inputs and the examples. The entries along the main diagonal are the predictions of
the model for the motor plan it was trained on.

9.3. Discussion 229

P

:

P

: :

Q

:

Q

: : : :

: : : :

Figure 9.12: Relation (9.1) implemented with VARMA and examples consisting of a single stroke. The
column marked with P displays the reconstruction used as an example (gray) with the tra-
jectory predicted by the model in black. With a single stroke, the prediction is qualitatively
accurate.

9.3.1 Model complexity

We have demonstrated that with an appropriate feature representation, it is possible to train

a complex and flexible model, such as an RNN, on a very small dataset, with results that we

evaluate as qualitatively satisfactory. We have chosen this specific model, given the remark-

able results that have been demonstrated by Graves (2013) with handwriting data, and in

order to evaluate the performance of this model with the ΣΛ model as an intermediate rep-

resentation. At the same time, the sparsity of this representation suggests that similar results

can be achieved with simpler methods, possibly resulting in a significant gain in computa-

tional performance. A future goal would be to develop a fully interactive system, where a user

can quickly stylise a trajectory from examples executed or loaded on the fly.

9.3.1.1 Linear solution

As a step in this direction, we have also tested a simple linear model, perhaps at the opposite

end of the complexity spectrum with respect to the RNN: a vector auto-regression-moving

average (VARMA) model (Kendall and Ord, 1993), in which the kinematic parameters for one

virtual target depend on a window of L previous virtual targets and kinematic parameters.

230 Chapter 9. Example-driven stylisation with the Sigma Lognormal Model

This can be expressed with the linear quadratic system:

y i =
L∑

k=1
Ak

i y i−k +
L∑

k=0
B k

i ξi−k +C iφi +εi , (9.5)

where A,B ,C are coefficient matrices, y i and ξi are the kinematic parameters and virtual

target displacements for the i th ΣΛ primitive, normalised to zero mean and unit standard

deviation,φi is a non-linear function of x i and y i−1, and εi is a (Gaussian) white noise term.

The system can be expressed compactly as:

Y = XΘ+ε , (9.6)

which is linear in the coefficients Θ and can be solved with ordinary least squares by setting

each row of Y with Y i = y i , and each row of the matrix X with

X i =
[
1, y i−1, · · · , y i−L ,ξi , · · · ,ξi−L ,φi

]> . (9.7)

We compute the non linear terms φi with a quadratic function of the current virtual target

and the previous kinematic parameters given by:

φi =
[
ξ>i ξi , y>

i−1 y i−1,ξ>i y i−1

]
. (9.8)

We test the ability of the model to reconstruct an increasing number of strokes. With a

training example consisting of a single stroke, the model is able to correctly reconstruct the

example and to successfully stylise new motor plans (Figure 9.12). However, as the number of

strokes in the example increases, the reconstruction quality quickly degrades and the relation

between the stylisation of the user provided motor plan and the training example becomes

unclear (Figure 9.13).

9.4 Conclusion

We have demonstrated how an RNN-based architecture combined with a physiologically

plausible model of human movement, the Sigma Lognormal (ΣΛ), can be used to imple-

ment a data driven path stylisation system. Our method functions similarly to existing path

stylisation methods used in computer graphics applications (e.g. (Hertzmann et al., 2002;

Lang and Alexa, 2015)). However, we propose an approach to stylisation based on the con-

cept of “style as kinematics”, in which different styles are given by kinematic variations over

a common structure of a hand drawn or written trace. We argue that using a physiologically

plausible model of movement as a feature representation then provides a number of advan-

tages with respect to polygonal (point sequence), or spline/interpolation based approaches.

9.4. Conclusion 231

Figure 9.13: Degradation of the parameter predictions with VARMA as the number of example strokes
increases (left to right). The first row, is the prediction in black of the example in gray. The
second row is the prediction for a user provided motor plan.

First of all, the results reflect a realistic and natural movement which, similarly to the meth-

ods developed in the previous chapters, can be used to (i) produce expressive renderings

and animations or even to (ii) drive the natural motions of an animated character or robotic

drawing device. Furthermore, the ΣΛ parameterisation provides a concise and informative

representation that simplifies the learning task, and its parameters can be used (as demon-

strated) to augment training data, but also to generate realistic variations in the generated

outputs.

The reported work provides a solid basis for a number of different future research av-

enues. As an example, we hypothesize that a similar feature representation and architecture

can be used to achieve handwriting synthesis results equivalent to the ones demonstrated

by Graves (2013), with the additional benefits of resolution independence and the possibility

of training on a much reduced dataset size, even achieving satisfying results with one sin-

gle training example. While the preliminary results achieved with a much simpler model

(VARMA) in Section 9.3.1 are not on par with the ones achieved with an RNN, the results still

suggest that a slightly more complex data representation, here in terms of the ΣΛ model, can

produce satisfactory results while greatly reducing training time. In the future we also plan to

study the performance of other potentially efficient models that can be used to solve a sim-

ilar problem, ranging from Kalman or particle filtering approaches (Murphy, 2012), to more

recent sequence-based deep learning approaches (Zhang et al., 2017b; Tang et al., 2019).

Chapter 10

From 2D Shape to Strokes with CSFs

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 10.1: In this chapter we partition font outlines (red) into a set of overlapping and intersecting
strokes. We recover two stroke representations: (i) a path based representation consist-
ing of a set of paths augmented with variable width profiles and annotations describing
structural relations among strokes (a); (ii) an area based representation that decomposes
the input into overlapping shapes (h). In Chapter 11 we will use the first representation
to reconstruct a glyph in a variety of stroke-based styles (b-g), from line-based schema-
tizations, to graphic stylizations using skeletal strokes, to artistic stylizations that mimic
handwriting and graffiti art. We will use the second representation to compute a similar-
ity metric between stroke areas, allowing consistent shape-based stylizations across the
glyphs of a given font.

This chapter and the next one are based on work developed in collaboration with Prof. Fred-

eric Fol Leymarie and with Dr. Paul Asente and Dr. Jose Echevarria at Adobe Research. The

collaboration started when I spent a 3 months internship at Adobe Research in San Jose, Cal-

ifornia, in early 2018. The contents are adapted from a journal article that is in preparation

at the time of writing.

Up to this point, we have developed a set of tools that enable the generation of synthetic

graffiti with the explicit definition of a motor plan (either user defined or procedurally gener-

234 Chapter 10. From 2D Shape to Strokes with CSFs

ated) or, for the case of tags, by recovering a motor plan from example traces. However, we are

still left with the challenge of generating graffiti stylisations of a given string of text, possibly

in arbitrary languages or writing systems and with different styles and glyph structures.

One possible solution to this challenge is to first manually define a set of motor plans, for

example one for each letter of the alphabet, and to then concatenate and stylise these with

the previously defined stroke generation methods. We have seen an example of this approach

in Chapter 5. However, this procedure requires a user to manually define the graph structure

of these motor plans, which must also be concatenated with consistent spacing, which is also

a challenging problem on its own (Haines et al., 2016). A second approach is to train a model

that generates motor plans for one or more glyphs with a sequence based model, such as

the one developed by Graves (2013) and used in Chapter 9 for trace stylisation. While this

approach is interesting and a promising avenue of future research, it requires training data

that may be missing for the language or writing system of choice.

This chapter describes a flexible solution that relies on the outlines of existing font as a

source for possible letter structures. Recall that a font consists of multiple glyphs (in a certain

“style”) and a glyph is an element of a font, usually representing a letter, number, or another

symbol. The underlying observation of our method is that the outlines of most glyphs can

conceal a latent structure as a set of strokes, which when combined, closely re-generate the

glyph’s shape. Recovering these strokes transforms the wide variety of available digital fonts

into a source of possible glyph structures, which can be used to generate structurally-aware

stylisations of the glyphs with the methods developed in the previous chapters. Grounding

text stylisation on fonts also has the advantage that it can use embedded kerning information

to create appropriate inter-glyph spacing, something that can be difficult to achieve with

methods that create stylised text from scratch (Haines et al., 2016).

Some simple glyphs can be segmented into strokes just by analyzing their medial axis

branching structure (Wang et al., 2013), but this approach is not sufficiently robust for the

variety of shapes and combinations of strokes that occur in fonts. Our proposed solution

relies on well-studied principles from visual perception (Wagemans et al., 2011) and it must

deal with the same issues raised by the related problem of decomposing 2D object outlines

into parts. We have seen in Section 3.8.4 that while this kind of problem also depends on do-

main knowledge (Spröte et al., 2016), psychophysical results suggest that perceptual group-

ing (Brooks, 2015) and formulating early part-segmentation hypotheses (Xu and Singh, 2002)

are possibly pre-attentive processes that occur very early in the vision process.

We approximate and model these perceptual processes with the aid of CSFs (Chapter

7), which facilitate the definition of a set of measures and representations that fit with a pre-

attentive computational model of vision. CSFs, and the resulting CASA, serve as a build-

ing block that is used to construct a series of incrementally higher level feature representa-

tions. These representations support our assumption of an input generated as a combination

10.1. Overview 235

strokes. The overall method is also based on practical considerations aimed at the final goal

of enabling stroke stylisations using the methods discussed in Part I of the thesis, this for

input glyphs in an “as-wide-as-possible” variety of styles and writing systems.

In a nutshell, we first use CSFs to identify potential pairwise relations between features

which we name splits; these are located where multiple strokes can potentially cross or over-

lap. We then constrain the space of possible solutions to the stroke identification problem

by defining six types of junctions, an intermediate representation that characterizes where

and how strokes can intersect or end. Junctions are found iteratively and their identification

fully characterizes the recovered stroke structure of the glyph. We then use junctions to pro-

duce two related stroke representations. For some stylisations, it is most useful to represent

each stroke as a simple outline. For others, we recover a set of stroke paths that can easily be

transformed into a motor plan and a sequence of stylised strokes.

The proposed method produces structurally and visually plausible stroke-based repre-

sentations of glyphs, using shape analysis alone (Figures 10.1 and 10.2). While this can pro-

duce segmentations that are somewhat different from the traditional structure of the glyph,

or from ground truth if it exists, it has the considerable advantage of being agnostic to the

symbols used and works with glyphs that do not match any standard structure for a letter.

The result is a system that can be applied to most glyphs and languages, and even to other

2D shapes that can be closely approximated by a series of strokes.

10.1 Overview
The input to our method is a set of contours, defining the outline of a 2D shape, possibly with

one or more holes. The method works on shapes that can be closely approximated by the

union of strokes that can cross and that can have one stroke overlapping another at its end.

This includes most, but not all, glyph shapes (Figure 10.2), as well as some other shapes that

can be drawn using distinct strokes (Figure 10.23).

Figure 10.3 summarises the main steps of the proposed approach. We infer the stroke

structure of an input glyph using a simultaneous analysis of its outline and its internal and

external (extended) symmetry axes. This joint representation facilitates a robust and accu-

rate estimation of outline features, such as tangents at concavities, and enable a perceptually

inspired measure of good continuation along disjoint outline segments. Pairs of concave

CSFs are associated with line segments that are called splits (Section 10.3), delimiting regions

where two strokes can potentially intersect or where one part of the shape protrudes from

another.

We furthermore analyze CSFs, splits, and their relationships to the shape’s interior skele-

ton to create higher-level features that we call junctions (Section 10.4), describing topolog-

ical relations between strokes and morphological shape features. We propose six types of

junctions, each implying grouping operations on a subset of the SAT and segmenting it into

236 Chapter 10. From 2D Shape to Strokes with CSFs

Figure 10.2: The targets for our method are glyphs that have a recoverable stroke structure, such as
the first three glyphs from the left (each a sample from the Rockwell, Giddyup and Apollo
fonts), but not the glyph on the right (from the Rosewood font). The inferred stroke re-
construction can be exact (Rockwell, Giddyup) or deviate slightly from the glyph’s outline
(Apollo). Our method works with glyphs having nonstandard structures, like Giddyup and
Apollo, which would present challenges for template-based approaches. In the second row
are stroke-based stylisations, produced by our system, of the first three glyphs.

SplitsSAT Junctions

CSFs

ConcaveConvex

Stylization

Branch groupsOutline (input)
Paths

&
Areas

Figure 10.3: High level overview of the segmentation and stylisation of a glyph outline, where the blue
arrows show mappings between key elements of our approach. We note that junctions ab-
stract combinations of splits and concavities and determine their relationships to the SAT,
ultimately leading to its segmentation and to the construction of stroke representations
that can be used to regenerate, animate and stylise the input.

branch groups, potentially overlapping subgraphs that correspond to strokes. This segmen-

tation is transformed into two stroke representations (Section 10.5), which we will use in the

next chapter (11) to create gylph stylisations and animations .

10.2. 2D Shape Analysis 237

10.2 2D Shape Analysis
Perceptual studies show that 2D shape understanding in humans is driven by a combination

of cues obtained from an analysis of the boundary, the interior structure including local sym-

metries, and global properties like the relationships among parts (De Winter and Wagemans,

2006). In accordance with these results, we use a mixed contour-based and region-based

approach relying on CSFs and on the interior and exterior CASA, SAI+ and SAE+, presented

in Chapter 7. This extended structure relates the topological structure of the interior to fea-

tures along its outline and serves as a basis for the subsequent identification of higher-level

features that guide the decomposition of the input into strokes.

10.2.1 Extended 2D Shape Analysis

We use CSFs and the CASA to derive a number of additional features and measures that will

be useful in the subsequent segmentation stage (Section 10.3).

10.2.1.1 Concave features: Tangents, bisectors, and influence

Each concave CSF is assigned a pair of unit tangent vectors t 1 and t 2 at the first and last points

z1 and z2 of the corresponding contact region and a unit bisector b with direction t 1 + t 2,

positioned at the CSF extremum (Figure 10.4). The bisectors are similar to Leyton’s “process

arrows” for absolute minima of curvature, and the flipped bisector direction captures the

hypothetical direction of a force that, when locally applied to a somewhat plastic or malleable

version of the outline, creates an indentation (Leyton, 1988).

We use these bisectors to quantify the influence of a concavity c on a given SAI+ vertex

v . The influence depends on the angle φ between the bisector and the vector connecting v

to the extremum of c. It is given by a Von Mises-like function (Feldman and Singh, 2005), a

circular analog of a Gaussian:

d(c, v) = ekc (cos(φ)−1) . (10.1)

The influence value has its maximum value of 1 when φ= 0 and tends towards a low positive

value (d(c, v) = e−2kc) as φ increases. As an example, in Figure 10.4.b, the concavity on the

left has less influence on the fork (black dot) than the one on the right. The constant kc

determines the minimum influence of a concavity on a vertex and is experimentally set to

kc = 0.5.

10.2.1.2 Concave features: Ligatures

SAI+ vertices with ribs terminating in the contact region of a concave feature identify ligatures

(August et al., 1999), thus relating SAI+ segments to concavities. Ligature segments can act as

“glue” that connects perceptually distinct outline parts (Macrini et al., 2008) and often appear

distorted with respect to the ideal spine of a stroke that traverses the corresponding glyph

region. To identify ligatures, we first assign each degree-2 vertex in SAI+ to its nearest fork or

terminal using a radius-weighted distance:

238 Chapter 10. From 2D Shape to Strokes with CSFs

(a) (b)

Figure 10.4: (a) A capital letter “A”, with its interior and exterior medial axes and elements of its CSFs. (b)
Close up of the bottom-left part, showing ribs connecting contact regions to SAI (dashed
red segments), concave feature tangents (red arrows) and bisectors (blue arrows). The lig-
ature segment produced by the left concavity with respect to the fork (black circle) is em-
phasized in red.

Definition 10.2.1. The radius-weighted distance between a fork or terminal and a degree-2

vertex is s−r , where r is the radius of the fork or terminal disk and s the length of the shortest

geodesic path through SAI+ connecting them.

A ligature is a contiguous subsegment of a branch b that starts from one of its end-

vertices v and extends along adjacent vertices that (i) are closer to v than to the other end-

vertex and (ii) have a rib terminating in the contact region of a given concavity c. The segment

exists only if any normal (degree-2) branch vertex that is assigned to v has a rib terminating

in the contact region of c. A ligature can also be defined with respect to multiple concavities

along b, in which case it is the union of all the concavities’ ligatures.

10.2.1.3 Assigning concavities to forks

We use ligatures to assign a set of concave CSFs to each SAI+ fork. Each concavity c produces

zero, one, or two ligatures for each branch in SAI+, with one possible ligature for each end-

vertex v . If only one ligature exists, and v is a fork, the concavity is assigned to the fork. If

two ligatures exist, we select the end vertex for which the influence d(c, v) is highest, or both

if the influences are equal, which can happen in symmetric shapes. If any of these vertices is

a fork, the concavity is assigned to it. Note that a concavity can be assigned to more than one

fork, and that more than one concavity can be assigned to a single fork. In Figure 10.4.b, both

concavities are assigned to the central fork with the dot, and no concavities are assigned to

the forks near the end of the serifs.

10.2.1.4 Ligatures: Branch protruding direction,π(b, f)

We also use ligatures to compute the direction of a branch relative to a fork.

10.2. 2D Shape Analysis 239

Definition 10.2.2. The protruding directionπ(b, f) of a branch b con-

nected to a fork f is given by the first unit tangent vector (blue arrow)

along the branch that is not part of a ligature (red branch segment).

If the whole branch is a ligature, π(b, f) is the tangent at f . A branch

connecting two forks in SAI+ has two protruding directions, one for

each fork.

We will later use π(b, f) to relate branches to concavities based on a further analysis of

the outline that also depends on the structure provided by CSFs (Section 10.3.2).

10.2.1.5 Branch salience, β(b, f).

To distinguish between SAI+ branches that characterise the body of a stroke from those that

identify morphological features like the cap of a stroke or a corner, we define the salience β

of a branch b protruding from a fork f . We take the interior degree-2 vertex of the branch

adjacent to the fork and identify the two distinct outline points (z1, z2) touched by its disk.

β is a function of “stick-out” (Hoffman and Singh, 1997): i.e. the length s of the connecting

path along the outline having most ribs incident to b, divided by the length of the connect-

ing straight chord, ‖z1 − z2‖. β is defined using an “exponential-rise-to-maximum” function

(Dresp-Langley, 2015):

β(b, f) = 1−exp

(
λ

(
1− s

‖z1 − z2‖
))

, (10.2)

giving it a range of [0,1]. We consider a branch b to be salient with respect to a fork f if

β(b, f) ≥ 0.5. If the outline points are on different paths, then β(b, f) = 1. The parameter

λ determines the subdomain for which β � 1 by controlling the steepness of the salience

curve. Here we use λ = λs , which we empirically set to 0.5. This corresponds to a stick-out

threshold of ≈ 2.4. In Figure 10.5, if we use 0.5 as the threshold for determining salience, the

upper colored branch is not salient, while the center and lower colored branches are.

Salience with respect to a concavity βc (b, f) We can also compute the salience with respect

to a concavity c that is assigned to the fork f , which is denoted as βc (b, f). The computation

is identical, except that λ also depends on the angle θc between the concavity’s tangents. This

allows us to adjust the salience value of long branches such as the middle one in Figure 10.5,

which helps to identify them as extending into a corner or bend. When a branch is opposite

a concave corner, its length and stick-out value increase with a rate that is proportional to

1/sin(θc /2) (Shaked and Bruckstein, 1998). Hence, we define:

λ=λsλθ, where λθ =
�

2sin

(
θc

2

)
, (10.3)

240 Chapter 10. From 2D Shape to Strokes with CSFs

1 2 3 4 5 6 7
stick-out

0.00

0.25

0.50

0.75

1.00

β

(a) (b)

Figure 10.5: Branch salience computation. The salience valuesβ(b, f) of the colored branches and orig-
inating forks in (a) are plotted along the black curve in (b). The blue and pink branches
have salience values above the 0.5 threshold. However, the fork for the blue branch has
been assigned a concavity c, while the forks for the other two branches have not. This al-
lows computing the salience of the blue branch with respect to that concavity. θc is the an-
gle between the tangents of c. Computing the salience with respect to c results in λθ = 0.19
(eq. (10.3)) producing a flatter salience curve, shown in red. The blue branch is thus con-
sidered non-salient because βc (b, f) < 0.5 at the blue cross in (b).

which results in λθ < 1 when θc is acute; we note that the stick-out value for which a branch

is considered salient increases as θc decreases.

10.2.2 Good continuation (α) and flow direction (ϕ)

Segmenting the input and resolving crossing strokes requires first pairing concavities using a

measure of good continuation along the outline. We use association fields (Wagemans, 2018),

which have been proposed to model the neural processes responsible for contour integration

and perceptual grouping in early vision. Various computational implementations have been

defined, some based on cocircularity (Parent and Zucker, 1989; Yen and Finkel, 1998), i.e. how

one local orientation, typically specified by an edge, can be connected to another nearby edge

if it is reachable by circular paths within a region specified by the field.

We adapt an experimentally-verified approach by Ernst et al. (2012) that is based on a

stochastic model of contour integration (Williams and Thornber, 2001). Given two oriented

edge elements, the model defines a field that decays as a Gaussian function of deviation from

perfect cocircularity, collinearity, and distance between the two edges (Figure 10.6). We com-

pute the good-continuation valueα of one concavity with respect to another by selecting two

opposing point-tangent pairs (z i , t i) and (z j , t j); refer to Appendix D.1 for mathematical de-

tails of the method. Because the calculation is symmetric, for a given potential pairing, either

concavity can be used as the anchor.

For each concavity in a pair there are always two tangents to choose from when com-

puting good continuation. The selection depends on a direction that we call the flow.

10.3. Splits 241

0.00

0.25

0.50

0.7 5

1.00

(a) (b)

Figure 10.6: Association fields for two corners in a letter T with corresponding colored values α. (a)
Case where the corners are well-aligned and the association field gives a sufficiently high
good-continuation value α ≈ 0.7. (b) Case where the corners are not well-aligned: the
association field from one corner reaches the other but only with a low good-continuation
value α ≈ 0.2.

Definition 10.2.3 (Flow, ϕ). Given a concavity pair ci and c j , the flow

direction ϕ(ci ,c j) is the normalized sum of the two associated bisec-

tors bi ,b j .

When estimating the good-continuation value between two concavi-

ties, we always choose the tangent most orthogonal to ϕ. We also use ϕ to identify splits that

link concavity pairs as discussed in the next section. When two concavities are linked in a

split, the flow direction of the split is the flow direction of the concavities.

10.3 Splits
The previous section describes structures that capture important geometrical and topolog-

ical aspects of a 2D glyph. These are the basis of a series of “divide and merge” operations

that result in strokes. The divide operations, described in this section, indicate likely parti-

tioning lines where the shape could be cut. The merge operations (Section 10.4) are based on

identifying various types of “junctions” that reconnect parts to obtain plausible local stroke

topology. These two complementary operations let us build strokes and use them for stylisa-

tions (Sections 10.5 and 10.6).

As we have seen in Chapter 3, pairs of concavities are important cues for the segmenta-

tion of object silhouettes into parts (De Winter and Wagemans, 2006) and many well-known

approaches (Singh and Hoffman, 2001; Luo et al., 2015) use such pairs to define “partition

lines” or “cuts” (Papanelopoulos et al., 2019) that delimit perceptually-distinct object parts.

Because our goal is identifying strokes instead of general parts, we use related but different

objects that we call splits.

A split delimits a protrusion in the outline with a line segment, which represents a po-

tential location where strokes can cross or overlap. The line segment is constrained to be in

the interior of the outline and links two concavities c1,c2 by connecting the extrema of their

242 Chapter 10. From 2D Shape to Strokes with CSFs

(a) (b) (c)

Figure 10.7: Valid and candidate splits selection. (a) Concavity pairs producing segments that are in-
ternal to the shape and intersect at least one SAI+ branch. (b) Valid splits, consistent with
local conditions. (c) Final candidate splits based on saliency measure and organized in the
graph GH . Note that GH also contains disconnected vertices for concavities.

CSFs. A split further identifies one SAI+ branch bi that connects to a fork f j ∈ SAI . The fork

f j is always a fork in SAI and never one introduced by the construction of SAI+ because those

are associated with morphological features that do not indicate new strokes.

A split associates two concavities to determine a directional relationship between a fork

f j and one of its incident branches b j . The branch protruding directionπ(b, f) and the flow

directionϕ(ci ,c j) are indicative of the direction in which a stroke should traverse the split. A

single split indicates a potential separation or intersection of one stroke with another. Using

good continuation to associate pairs of splits helps identify regions where strokes cross or

overlap. Later, in the junction identification stage (Section 10.4), these pairs are used to link

SAI+ branches across the region.

Valid splits Not all combinations of concavities produce a valid split and not all combina-

tions of splits produce a valid segmentation (Figure 10.7.a, b). For two concavities to produce

a valid split, they must be geometrically consistent with the definition above and they must

obey a set of perceptually inspired local conditions (Section 10.3.1). As we detail in Section

10.3.2, the branch assigned to a split is not necessarily one intersecting it because of SAI+
distortions that often occur near ligatures. The validity of a split also depends on this assign-

ment being possible, which is determined based on the configuration of SAI+ with respect to

the outline.

Candidate splits and the split graph GH . Two valid splits might intersect, or might identify

the same branch protruding from the same fork, in which case they are considered incompat-

ible (Figure 10.7.b). We resolve these cases using a measure of split salience (Section 10.3.3)

and only select the most salient split among incompatible ones, resulting in a subset of can-

didate splits. We then organize candidate splits into a graph GH = (C , H) having one vertex

for each concavity and one edge for each concavity pair connected by a candidate split (Fig-

ure 10.7.c). The connected components of GH define local areas where hierarchical relations

10.3. Splits 243

(a) (b) (c)

0.73 - 0.34 0.03

Figure 10.8: Computation of local convexity for different concavity configurations (red circles) and bi-
sectors (blue arrows). The dotted black lines are the segments that maximize the left term
of equation (10.4) over all segments (magenta area) that connect the contact arcs (thick
black arcs) and the yellow arrows are perpendicular to them. The angle range Θ̄ covered
by the segments is visualized as a cone in yellow. The examples (b) and (c) have the same
contact circle centers and bisectors. With a “Z”-like configuration, the value of equation
(10.4) in (b) is negative, thus invalidating the split. Given the tolerance εθ , increasing the
curvature radii of the concavities in (c) results in a positive value and valid split.

between protrusions can exist (Macrini et al., 2011) or where split pairs can be associated.

The graph is updated during the junction identification procedure (Section 10.4) and helps

keep track of remaining splits and concavities to process.

10.3.1 Local conditions

We reduce the possible combinations of concavities inducing a valid split with two percep-

tually inspired constraints, one of proximity and one of local convexity. In our experiments

these constraints improve the robustness of the method and avoid splits that would be oth-

erwise perceived as delimiting invalid parts or protrusions of the outline.

10.3.1.1 Proximity

This is a basic Gestalt principle involved in perceptual organization (De Winter and Wage-

mans, 2006; Brooks, 2015). Since we assume the input is a combination of elongated strokes,

we enforce proximity by examining the forks assigned to the split’s concavities. For a split to

be valid, either the concavities must be assigned to the same fork, or the distance between the

fork centers must be less than a user-configurable multiple λr of the maximum disk radius

in SAI+. We empirically find that a multiple of λr = 3 works well for our use case.

10.3.1.2 Local Convexity

Known to be an important cue in perceptual grouping (Elder, 2015), convexity has been used

to drive a number of part decomposition approaches (De Winter and Wagemans, 2006). Sim-

ilar to Papanelopoulos et al. (2019), we observe that for a split to produce a natural looking

segmentation, it should delimit a region that is “locally convex” on at least one of its sides.

Local convexity is achieved if both bisectors, one per concavity, are within some tolerance of

pointing towards the same side of at least one segment connecting the two contact regions

244 Chapter 10. From 2D Shape to Strokes with CSFs

associated to this pair of concavities (Figure 10.8). This holds if

max
θ∈Θ̄

[
sin(φ1 −θ)sin(φ2 −θ)

]+ sin2 εθ ≥ 0 , (10.4)

where Θ̄,φ1 andφ2 are the angles that the segment and the bisectors make with respect to the

horizontal, Θ̄ is the angle range spanned by the segments, and εθ is a user defined tolerance

that we empirically set to 15◦.

10.3.2 Fork and branch assignments to splits.

Splits induce parent-child relationships similar to the ones defined by Macrini et al. (2011),

who describe a method to compute hierarchical relations between skeletal parts based on

ligature analysis; in our experiments we found their method unable to handle the wide va-

riety of situations typical of glyphs. Instead we use a heuristic method that is based on our

outline analysis and produces more reliable results for our use case. The method depends on

the enumeration of a number of branch and split configurations that we have found to occur

in a variety of glyphs, and that are sufficient to produce plausible stroke segmentations for all

the cases we have considered. A split is valid only if one of these configurations is identified.

We attempt to assign a branch b and fork f to each split, where f is one of the forks

incident to b, f is near the split, and b, when considered to be starting at f , has a direction

that indicates how the outline protrudes at the split. We formalize the notion of f being near

the split by requiring it to be a member of FC , the set of forks that have been assigned to

either of the split’s concavities (Section 10.2.1.3). We formalize the notion of the direction of

protrusion by requiring that the dot product

dϕ(b, f) =ϕ(c1,c2) ·π(b, f) (10.5)

be positive, whereϕ(c1,c2) is the flow for the split’s concavities (Def. 10.2.3) andπ(b, f) is the

branch protruding direction relative to f (Def. 10.2.2).

There are five main cases to consider:

1. The split intersects one branch b (Figure 10.9.a). If b is incident to a fork f that is in FC ,

and dϕ(b, f) is positive, we assign (b, f) to the split.

2. The split intersects two branches b1 and b2 that are incident to the same fork f in FC ,

and dϕ(b3, f) is positive for the third branch b3 incident to f (Figure 10.9.b). If so, we

assign (b3, f) to the split.

3. The split intersects three branches that are incident to a fork f in FC (Figure 10.9.c);

this is the limit case of the previous configurations. We check the branch b incident to

f that gives the largest value for dϕ(b, f); if this value is positive, we assign (b, f) to the

split.

10.3. Splits 245

4. The split intersects two branches b1 and b2 incident to the same fork f in FC but

dϕ(b3, f) is negative for the third branch b3 incident to f (Figure 10.9.d). In that case,

we consider f ′, the fork at the other end of b3, and check whether f ′ is in FC and

dϕ(b3, f ′) is positive. If so, we assign (b3, f ′) to the split. This represents a case similar

to the first, but where SAI+ divides before the branch can cross the split. The division

could indicate a stroke end, as shown in the figure, or it could continue into significant

shape features, as in the middle of some letter K configurations. There is also a limit

case for this configuration similar to (2).

5. The split intersects two or more branches that are incident to different forks in FC (Fig-

ure 10.9.e). For each such fork fi , we check the incident branch bi with the largest value

for dϕ(bi , fi); if this value is positive, we compute the branch’s salience βi = β(bi , fi)

(Section 10.2.1.5). If none of these branches is salient, that is, βi < 0.5 for all of them,

this results in a special configuration we call a compound split. The split is assigned

any one of these branches and its fork. This configuration is similar to (4), except that

the protrusion is not sufficient for the branches to merge at a single fork.

In all other configurations, nothing is assigned to the split and it is rejected.

10.3.3 Split salience

The disambiguation of incompatible splits and the later junction analysis stage both rely on

a measure of split salience. It uses four concepts from perceptually-driven studies of part

decomposition to favor splits that are: (i) short (a.k.a. the “short-cut rule” (Singh et al., 1999;

Singh and Hoffman, 2001)), (ii) connecting pairs of salient concavities (a.k.a. the “minima

(a) (b) (c) (d) (e)Flow direction
Concavity
Assigned fork
Split

Figure 10.9: Branch and fork assignment of a split (dashed blue line), depending on its branch intersec-
tions. A red arrow shows the flow direction (Def. 10.2.3) of a split, while black dots and red
segments are forks and branches that can be assigned to that split. (a) The split intersects
one branch. (b) The split intersects two branches incident to the same fork, and the third
branch leads into the outline protrusion. (c) Limit case between (a) and (b), in which the
split intersects all three branches incident to a fork. (d) The split intersects two branches
incident to the same fork (upper blue circle), and the third branch (red) for that fork leads
away (blue arrow) from the outline protrusion and is short enough that the fork at its op-
posite end (black circle) is in FC ; the split is assigned that (red) branch and (black) fork,
since traversing the branch from the fork leads into the protrusion (black arrow). (e) The
split intersects two non-salient branches incident to different forks, creating a compound
split.

246 Chapter 10. From 2D Shape to Strokes with CSFs

rule” (Hoffman and Richards, 1984)) (iii) located between outline regions with good contin-

uation (a.k.a. “limbs” (Siddiqi and Kimia, 1995)) and (iv) separating a salient protrusion and

branch (Hoffman and Singh, 1997). We have observed that each of these four concepts con-

tributes to more robust segmentation results, which parallels human performances on part

decomposition (De Winter and Wagemans, 2006). Split salience is thus computed as the sum

of four terms:

ω(η) = w̄ +α+β+ληe(−‖η‖/rmax) (10.6)

combining the average salience value w̄ of the split’s concavities with the good-continuation

value α between the concavities, the protruding branch salience β, and an exponential gen-

eralization function (Shepard, 1987) of the split length
∥∥η∥∥ weighted by rmax, the largest disk

radius in SAI+. The latter term is weighted by a positive value λη that favors short cuts, which

we empirically set to 2.

10.4 Junction Identification
Splits, together with CSFs, SAI+ and the associated information, provide a feature set that can

be viewed as a geometric counterpart to representations that are hypothesised to occur pre-

attentively in the human vision process. We use this feature set to construct a plausible graph

structure for each stroke, which is achieved by organising all SAI+ forks and their connected

branches into junctions. Formally, a junction J maps a set of forks F J to a set of concavities

C J and splits HJ . Either C J or HJ can be empty and for brevity we will say that the junction J

covers the forks in F J .

Junctions segment SAI+ by assigning stroke labels to its branches, with the labels be-

ing propagated across adjacent junctions and being determined by the junction type (Figure

10.10). There are six junction types organized in two main categories, topological (Ψ, Y and

T), shown in Figure 10.11, and morphological (flexure, blunt-tip, null), shown in Figure 10.12.

Junctions are identified sequentially and each identification assigns labels to a group of

branches incident to forks in F J ; these can either be new labels or labels already in the group.

Figure 10.10.a shows a label from one junction propagating to a branch in a second junction.

Branches can also be multi-traced; they accumulate labels and indicate a region where mul-

tiple strokes cross or overlap. In Figure 10.10.b the initial label of the central branch does not

propagate to the vertical branches; instead the branch ends up with multiple labels.

Once all junctions have been identified and branches labelled, we use the labels to create

branch groups (or groups for short): Subgraphs of SAI+ containing all branches that share

a particular label. Two branch groups can share branches, for example, where one stroke

crosses another. They form the basis for segmenting the glyph into strokes (Section 10.5).

Note that SAI is a subset of SAI+ so the procedure effectively segments both representations

into strokes.

10.4. Junction Identification 247

(a)

(1) (2) (3)

(b)

Figure 10.10: Label propagation in similar areas, each with two forks, but giving different branch
groups. Row (a) (1): In this classification each fork will identify a separate T-junction,
leading to three branch groups. (2): Classifying the first junction assigns one label to the
vertical branch and a second label to the two horizontal branches. (3): Classifying the
second junction also assigns a common label to the horizontal branches, propagating
the previously present label to the second horizontal branch. Row (b) (1): In this classi-
fication there will be two Ψ-junctions sharing the same two forks, producing two branch
groups that share a multi-traced branch (middle dashed line segment). (2): Classifying
the first junction assigns the same label to all horizontal branches. (3): Classifying the
second junction assigns another label to the vertically-oriented branches. Since the mid-
dle branch is multi-traced, its label is not propagated and it is assigned both labels.

10.4.1 Junction properties

Junctions uniquely determine the inferred stroke structure of an outline and are catgorised

into two main types: topological and morphological. Topological junctions determine the

connectivity between strokes, such as crossing, branching and incidence. Morphological

junctions determine the local shape of a stroke, such as bends, corners or stroke-caps.

This section describes the properties of the different junction types and how they label

SAI+branches, and the next describes how our system identifies these.

10.4.1.1 Topological junctions

Topological junctions come in three types: Ψ- Y-, and T-junctions.

Ψ-junctions: These occur when one stroke goes across one or more other strokes. A

simple crossing like that in Figure 10.10.b consists of two Ψ-junctions that share the same

forks; defining the junction this way simplifies the analysis of more complicated regions like

the one in Figure 10.11.a. A Ψ-junction is characterized by a pair of splits that have opposite

flow directions, are assigned to different forks, do not share a concavity, and have a high

good-continuation value between the concavities at the split ends (Figure 10.11.a). Note that

these splits cross the branch group and delimit where it enters and leaves the junction area;

248 Chapter 10. From 2D Shape to Strokes with CSFs

they do not specify the cuts that will delimit the edges of the stroke as it goes through the area.

The splits for the vertical blue path in Figure 10.11.a are the approximately horizontal splits

indicated by the dashed blue lines. The crossing path is the shortest subset of SAI+ connecting

the forks assigned to the splits. The domain FJ of the mapping that defines the junction,

includes all forks along the crossing path. Each branch of the crossing path is designated as

being multi-traced, and the crossing path and the two branches extending from the splits are

assigned the same stroke label. A Ψ-junction does not label all branches incident to the forks

in FJ ; the remaining branches will be labelled later as being part of otherΨ-, Y- or T-junctions.

Y-junctions: Part of the shape branches out into two parts. A Y-junction is character-

ized by a salient concavity between two of the branches incident to a fork. We call this the

representative concavity and call the branch opposite this concavity the root (Figure 10.11.b).

There are four possible interpretations for a Y-junction: In the first two, one branch and the

root share a stroke label, while one of the other branches is assigned another label. In the

third one, the root is designated as multi-traced and assigned the stroke labels of the two

strokes branching from it. In the fourth one, the three branches incident to the fork are as-

signed different labels. While this last configuration is valid, we chose never to use it based

on a qualitative examination of the overall segmentation and stylisation results. The inter-

pretation of a given Y-junction does not affect the identification of other junctions, but other

junctions can affect the Y-junction interpretation, so we postpone the choice of interpreta-

tion until all other junctions have been identified.

T-junctions: Part of the shape protrudes in a near-perpendicular fashion. A T-junction

is characterized by a representative split that separates the protruding branch from its orig-

inating fork (Figure 10.11.c). The junction assigns one label to the protruding branch and

(1) (2)

(3)

(a) (b) (c)

Figure 10.11: Topological junctions. (a) Ψ-junctions: Two Ψ-junctions, generating blue and orange
branch groups, cover three forks. A T-junction, generating a magenta group, covers one
fork. The crossing path is shared by both Ψ-junctions. (b) A Y-junction with (1) its salient
concavity and root branch (in red), and (2) one possible branch group. Three other in-
terpretations of the junction are possible (3). (c) T-junctions with (top) a single split and
(bottom) a compound split.

10.4. Junction Identification 249

(a) (b) (c)

Figure 10.12: Morphological junctions indicated by their respective forks. Each example results in a
single branch group. Dashed branches are disqualified. (a) Three flexures; two are strong
(black triangles) and one is weak (grey triangle). All flexures are characterized by concav-
ities (red circles) opposite the root branches. The weak flexure is characterized by a SAI+
branch that is not in SAI . Note that the top flexure disqualifies a branch that terminates in
a blunt-tip. (b) A blunt-tip marked with an orange square. (c) Two null junctions marked
with black squares.

another label to all other branches incident to the forks covered by the junction – there can

be more than one fork if the split is compound (Section 10.3.2).

10.4.1.2 Morphological Junctions

Morphological Junctions relate shape features of the outline, as indicated by CSFs, to forks

of SAI+ while disqualifying non-salient branches. Disqualified branches are still labelled as

being part of a group, but are ignored when we later turn groups into stroke paths (Section

10.5). Morphological junctions assign the same label to all branches incident to their forks

and can occur in nested configurations (Figure 10.12.a).

Flexures: The shape contains a fork at a convex corner or bend that produces a branch

in SAI+ (Figure 10.12.a). Flexures have a configuration similar to Y-junctions, having a signif-

icant concavity opposite a root branch, but with the root being non-salient with respect to

the representative concavity. A strong flexure characterizes a corner or a sharp bend and is

characterized by a root branch belonging to both SAI+and SAI . A weak flexure determines a

smoother bend and is characterized by the root belonging to SAI+ but not to SA. The junction

disqualifies the root branch.

Blunt-tips: The shape contains a fork at a stroke end. A pair of non-salient branches

protrudes from the fork and each such branch terminates at a convex CSF (Figure 10.12.b)

or, in a tree-like branching hierarchy, near one. The junction disqualifies the two non-salient

branches and any sub-trees that are present.

Null junctions: The shape contains a fork at a convex corner or bend that produces a

non-salient branch in SAI+ with no opposite concavity (Figure 10.12.c). The junction disqual-

ifies the least salient branch incident to the fork.

250 Chapter 10. From 2D Shape to Strokes with CSFs

(a) (b) (c) (d) (e)

Figure 10.13: Iterative junction identification and stroke label propagation for a letter “K”. From left
to right: (a) The initial configuration of GH with vertices (concavities) in red, and edges
(splits) in blue. (b) The first fork (blue disk) in the ordering results in the identification of
a T-junction, induced by the black split. (c) One remaining concavity results in the iden-
tification of a Y-junction. (d) Another concavity produces a flexure. (e) The remaining
forks produce blunt-tips.

ALGORITHM 1: Iterative junction identification

Data: SAI+, CSFs
Result: Junctions {J }
begin

Assign concave features to forks (§10.2.1.3)
GH = Split graph (§10.3)
GX = Crossing graph (§10.4.3)
for split pairs (ηi ,η j) ∈ GX , sorted by decreasing α(ηi ,η j) (§10.4.3) do

if no split in pair has been processed then
Label Ψ-junction
Update splits and concavities in GH (§10.4.3.3)

end
end
F = all forks not shared by two or more Ψ-junctions
while F is non empty do

Remove the fork with highest priority from F
Label junction for fork
Update splits and concavities in GH (§10.4.4.6)

end
end

10.4. Junction Identification 251

10.4.2 Iterative Junction Identification

Junctions often occur in complex and nested configurations and their identification becomes

non-trivial. Similarly to existing approaches for part decomposition (Siddiqi and Kimia, 1995;

Papanelopoulos et al., 2019), we resolve the identification problem with an iterative approach

(Figure 10.13). Algorithm 1 gives an overview. We first identify all Ψ-junctions, since they de-

fine crossing paths through SAI+ that should not be disconnected by subsequently identified

junctions. We then identify the remaining junction types.

10.4.2.1 Updating GH

We use the graph GH constructed in Section 10.3 to manage the changing configurations

of candidate splits and concavities. Each iteration of the identification procedure removes

vertices (concavities) and edges (splits) from GH depending on the identified junction. Re-

moving a vertex also removes all incident edges, affecting the subsequent identification of

remaining junctions.

10.4.2.2 Labelling branches

Any existing label on a multi-traced branch is ignored, treating the branch as being unla-

belled, since already-existing labels on multi-traced branches should not affect how other

branches are labelled. Each junction identification uses the following rules to assign labels

to groups of branches.

1. If no branch has a label, create a new one and assign it to each branch in the group.

2. If all labelled branches have the same label, assign that label to the other branches in

the group.

3. If there are branches with different labels, arbitrarily choose one, assign it to all

branches in the group, and also change all occurrences of unchosen labels in SAI+ to

that label. This final change also applies to multi-traced branches.

10.4.3 Step 1: Identify Ψ-junctions

The identification of Ψ-junctions requires finding candidate split pairs in GH that can be

associated based on good continuation.

For two splits ηi and η j having concavities (c1,c2) and (c3,c4), we de-

fine the connecting good-continuation value α(ηi ,η j) to be the prod-

uct, for the non-crossing split endpoint pairs (c1,c3) and (c2,c4), of

the two good-continuation values (Note that these are different from

the good-continuation values for the splits). When one of the splits is

assigned a non-salient branch, we reorient the tangents correspond-

ing to its concavities to match the split flow direction. This addresses one stroke crossing

252 Chapter 10. From 2D Shape to Strokes with CSFs

(a) (b) (c)

1
2 3

4

5 6

7

8

1
2 3

4

5

7

8

1 4
7

8

Figure 10.14: Ψ-junction disambiguation. (a) The red colored splits are all part of potential Ψ-junction
pairs, which are edges in GX (dashed black arcs). The dashed-red splits are nested. For
example split 2 is nested because its protruding branch (blue) is part of the crossing path
between split 1 and split 3, which can be paired. Split 6 is not paired with any other split
i because α(ηi ,η6) never exceeds the pairing threshold. (b) A path in GX connects splits
1,3,2,4. Splits 1 and 4 now form a new potential crossing pair. (c) This configuration
results in two Ψ-junctions; note that there must be a short multi-traced branch where the
branch groups cross. The remaining dashed grey splits will later identify T or Y junctions.

another but ending with a short, rounded protrusion (Figure 10.9.e), which sometimes oc-

curs, for example in Chinese hanzi characters (Kishore, 2018). In this case the tangents do

not adequately capture the perceived direction of stroke continuation.

Two splits can be paired if: (i) they are part of the same connected component in GH ,

(ii) they do not share a concavity, (iii) the connecting good-continuation value α(ηi ,η j) is

greater than a threshold set experimentally to 0.15, and (iv) the segments connecting the

split endpoints are well-aligned, which for our use case of fonts we interpret as the angle

between them being less than 45◦. Each such pair identifies a candidate Ψ-junction. Figure

10.14.a shows many potential pairings, but the only ones that meet all of these criteria are:

(1,3), (2,3), (2,4), (5,3), (7,8).

10.4.3.1 Nested splits and crossing graph GX

Candidate Ψ-junctions can occur in ambiguous nested configurations. We consider a split

in a pair to be nested if it is assigned a branch that is part of any crossing path defined by

another pair (Figure 10.14.a).

To identify valid Ψ-junctions and resolve nested configurations, we create an auxiliary

crossing graph, GX , having one vertex for each split that is part of a pair and one edge con-

necting each pair. Nested splits will never be chosen to delimit a Ψ-junction but we still

include them — they can act as a “bridge” that connects two other splits. In Figure 10.14.b

splits 1 and 4 are not paired because their connecting good-continuation values are not high

enough, but (1,3), (3,2), and (2,4) are valid, so 3 and 2 create a bridge connecting 1 and 4.

10.4.3.2 Identification

To identify crossing paths, we select split pairs among all pairwise combinations {ηi ,η j } in

GX where: (i) neither is a nested split, (ii) they do not share a concavity, and (iii) they are

connected by a path in GX (Figure 10.14.b). At each step we select the one with the largest

10.4. Junction Identification 253

cumulative product of the connecting good-continuation values α(ηm ,ηn) for each split pair

{ηm ,ηn} along the shortest path connecting ηi and η j (Figure 10.14.c). In Figure 10.14.c we

first choose (7,8) because its crossing good-continuation value is very high. The remaining

pairs (1,4), (5,4), (1,5) are all connected by paths in GX but the pair (1,5) is not valid because

its splits share a concavity. We finally choose (1,4), which has a slightly higher cumulative

product than (5,4).

10.4.3.3 Updating GH

Every time we identify a Ψ-junction, we remove its two splits from GH . We also remove any

other split with an assigned branch that shares more than one vertex with the crossing path,

which guarantees that the path is not disconnected by a subsequently-identified junction.

For example, if the nested splits in Figure 10.14 were not removed, they would lead to T-

junctions that would separate the crossing path produced by the split pair (1,4). If a concav-

ity is shared by two splits associated with different Ψ-junctions, we also remove it and any

incident splits from GH .

10.4.3.4 Label assignment

After identifying aΨ-junction we designate the branches on the crossing path as multi-traced

and assign a single label to all branches.

10.4.4 Step 2: Identify Other Junctions

The five other junction types are assigned to one fork at a time. The identification of a junc-

tion for a given fork f depends on: the splits H f that have been assigned to f , the concavities

C f assigned to f , and the salience of branches incident to f . Note that forks covered by a

Ψ-junction can still have unlabelled branches (Figure 10.11.a).

10.4.4.1 Procedure

We process forks with unlabelled branches one at the time, in order of decreasing priority,

given by: 
max
η∈H f

ω(η) , if H f is non-empty ,

max
c∈C f

w(c)+min
b∈B f

β(b, f) , otherwise ,
(10.7)

where ω(η), w(c),β(b, f) are respectively the split, concavity and branch salience values of

the splits H f , concavities C f , and incident branches B f associated with the fork f .

This ordering favours processing forks with assigned splits before forks without a split,

since the salience value of a split, ω(η), is the sum of four terms, including branch salience

(equation (10.6)). In practice, prioritises T-junctions with high values of ω(η).

We distinguish junction types using the salience of the branches incident to the fork

and the significance of the splits and concavities assigned to it. At each fork we construct

a branch salience ordering to distinguish and disambiguate morphological junctions, and a

254 Chapter 10. From 2D Shape to Strokes with CSFs

circular significance histogram with three sectors to disambiguate Y- and T-junctions, which

are both described next.

10.4.4.2 Branch salience ordering

Morphological junctions involve the presence of one or more non-salient branches. Inspired

by techniques in tensor shape analysis (Mordohai and Medioni, 2010; Westin et al., 2002), we

detect different types of morphological junctions by sorting the saliencies of the branches

incident to a fork (equation (10.2)) in decreasing order: β1 ≥ β2 ≥ β3, and considering their

relations normalized by the sum Σβ = β1 +β2 +β3. This gives three junction classification

measures:

• C M = 3β3/Σβ: this distinguishes morphological from topological junctions. A value

above a small tolerance τM , experimentally set to 0.2, means the least salient branch is

still salient enough to indicate a T- or Y-junction or a flexure.

• C B = (β1 −β2)/Σβ: a high value means that β1 >β2 'β3, suggesting a blunt-tip.

• C F = 2(β2 −β3)/Σβ a high value means that β1 ' β2 > β3, suggesting a flexure or null

junction.

Intuitively, this amounts to quantifying the shape of an axis aligned ellipsoid, with major

axes of length β1,β2,β3. Refer to Westin et al. (2002) for more details, including the reasoning

behind the constant factors.

10.4.4.3 Significance histogram

We examine the influence on the fork of the concavities in C f , as well as the ones associated

with any split in H f , by organizing them into three sectors. These are constructed by subdi-

viding the plane with three rays going from the fork vertex to the three points where the fork’s

branches intersect the disk outline (Figure 10.15). If a branch does not intersect the disk, its

ray goes through the tip of the branch. A concavity is assigned to a sector if its extremum is

in the sector.

We compute the significance γi for each sector Si , as:

γi =
∑

c∈Si

w(c)d(c, f) , (10.8)

that is, summing the significances of any concavity in the sector, which is defined as the con-

cavity salience value w(c) from equation (7.1) weighted by the concavity’s influence d(c, f)

as defined in equation (10.1). If a sector contains no concavity, γi = 0. We sort the three

sectors by decreasing order of significance values, γ1 ≥ γ2 ≥ γ3, and consider their relations

normalized by the sum Σγ = γ1 +γ2 +γ3. This gives two junction classification measures:

• C Y = (γ1 −γ2)/Σγ: a high value means that γ1 > γ2 ' γ3, suggesting a Y-junction or

flexure.

10.4. Junction Identification 255

0.00

0.25

0.50

0.7 5

1.00

(a) (b) (c)

Figure 10.15: Significance histograms for different junctions. The bins, concavity saliencies, and con-
cavity influences on the fork (visualized as arrows parallel to the bisectors) are colored
based on γi , w(c) and d(c, f), with γi normalized to [0,1]. The bins are scaled propor-
tionally to the respective value of γi . Splits are represented as dashed blue segments. (a)
A T-junction with two concavities. (b) A Y-junction with three concavities and three splits.
(c) A T-junction with three concavities and three splits.

• C T = 2(γ2 −γ3)/Σγ: a high value means that γ1
 γ2 > γ3, suggesting a T-junction.

For a Y-junction or flexure to exist, C f must be non-empty, and the junction’s represen-

tative concavity is the member of C f with the highest value of w(c)d(c, f). For a T-junction to

exist, H f must be nonempty, and the junction’s representative split is the most salient mem-

ber of H f .

10.4.4.4 Identification criteria

The other five junction types are mutually exclusive and are classified using a set of predicates

that depend on the branch saliency ordering, on the the significance histogram, and on the

branches and concavities assigned to the corresponding fork. A predicate, denoted as P (•),

identifies a property that distinguishes one or more junction types. The predicates are:

• P (M): Indicates the presence of a morphological junction and is true if C M ≤ τM ,

which means there is at least one branch with low salience.

• P (T): Suggests the presence of a T-junction because two sector significances are sub-

stantially higher than the third. P (T) is true if one or more splits are assigned to the

fork and C T /(C Y +ε) ≥ γT , where ε is a small constant to prevent division by zero and

γT is a user-defined threshold set to 0.2 in the examples given. Lower values of γT en-

courage identifying T-junctions, while higher values encourage identifying Y-junctions

and flexures.

• P (C): Is true if one or more concavities are assigned to the fork; that is, if C f is non-

empty.

• P (B): Suggests the presence of a blunt-tip and is true if C B/(C F + ε) is greater than a

user-defined threshold γB , experimentally set to 0.5 in the examples given.

256 Chapter 10. From 2D Shape to Strokes with CSFs

• P (Rβ): Distinguishes Y-junctions from flexures and is true if there is a root branch b that

is salient with respect to the representative concavity c, that is βc (b, f) > 0.5 (Section

10.2.1.5)

• P (RI): Distinguishes flexures from blunt tips and is true if C F > 0 and the most salient

concavity c ∈ C J has sufficient influence on the tip vr of the root branch; in the given

examples, we use d(c, vr) > 0.77, corresponding to an angle of approximately 60◦.

Connecting these predicates we can unambiguously decide the junction type with:

• T-junction: if ¬P (M)∧P (T).

• Y-junction: if ¬P (M)∧P (C)∧¬P (T)∧P (Rβ).

• Flexure: if (P (M)∨¬P (Rβ))∧P (C)∧¬P (T)∧P (RI).

• Blunt-tip: if P (B) and none of the above holds.

• Null junction: if none of the above holds.

10.4.4.5 Y-junction Interpretation

A Y-junction can be interpreted as either having: (i) a branching structure similar to a T-

junction, (ii) a multi-traced root, or (iii) three separate groups (Fig. 10.11.b). However, we

never choose the three-group interpretation based upon a qualitative examination of the

stylization results. Then, the choice depends on the following multi-criteria condition: the

configuration of the previously identified junctions, the local radius and protruding direction

of each branch incident to the junction’s fork, and on the length of the root branch. The local

radius of a branch is given by the disk radius of the first vertex along the fork that is not part of

a ligature. The ligature for the root is computed with respect to all concavities assigned to the

fork, while the ligature for the other branches is computed only with respect to the junction’s

representative concavity.

The degree of width disparity between two branches is given by the ratio r1/r2, where r1

and r2 are the local radii of the branches sorted by decreasing radius. We define the degree

of alignment αb between two branches to be the good-continuation value between the pro-

truding directions of the branches, with the vectors positioned at the vertices used to com-

pute the local radii. The relative root length is defined as (lb − r f − rt)/r f with lb being the

length of the root branch and r f and rt the disk radii of the root at the fork and at its opposite

end.

In general, we find that the most effective stylizations are obtained by favoring the

branching interpretation, reserving the multi-traced-root interpretation only for cases simi-

lar to the center of a letterform “B”. However different threshold values can be used for dif-

ferent effects. The multi-traced interpretation is selected only if: (i) the root is the protruding

10.5. From Junctions to Stroke Representations 257

branch of a T-junction, or ends in a blunt-tip or a terminal vertex, (ii) the relative length of the

root is less than a user-defined threshold Υl , and, (iii) the degree of width disparity between

the two non-root branches is less than a threshold Υw . For our examples we use Υl = 3 and

Υw = 1.3. Otherwise, we are in the branching configuration and we group the root with the

branch for which αb +0.5(r2/r1) is highest.

10.4.4.6 Updating GH

As with Ψ-junctions, we remove vertices (concavities) and edges (splits) from GH after each

junction identification. After identifying a T-junction, we examine each concavity connected

by the junction’s representative split. We calculate the absolute angle between the tangent

on the concavity’s side and the perpendicular to the flow direction of the split. If the angle

is smaller than the local convexity tolerance εθ (Section 10.3.1.2), we remove the concavity

and any split incident to it from GH (Figure 10.13.b). This is based on the observation that

separating the protrusion identified by the representative split can produce a locally convex

region in the neighborhood of the discarded concavity. We also discard a split from GH if it is

incident to the representative concavity of a Y-junction or flexure.

10.4.4.7 Label assignment

After identifying a junction, we assign one or two stroke labels to all the branches incident

to its fork. Morphological junctions assign a single label to all branches. T- and branching Y-

junctions receive two labels, one to the two grouped branches and the other to the separate

branch. Multi-traced Y-junctions also receive two labels, with the root receiving both.

10.5 From Junctions to Stroke Representations
Junction analysis merges SAI+ branches into a set of groups, one per stroke. For our use case

of stylisation, we use branch groups to derive two stroke representations. First, a set of stroke

paths, which are preferred paths extracted from each group, augmented with topological and

morphological junctions and a varying width profile. Second, stroke areas, which are a set of

potentially overlapping shape pieces that when unified closely reproduce the original glyph.

Each representation enables different stroke stylisations , which are discussed in the follow-

ing chapter.

10.5.1 Stroke Paths

A set of stroke paths enables many stylisation and animation effects because it captures a

plausible way in which a glyph could be drawn. Each branch group is mapped to a unique

path, which can easily be transformed into different kinds of strokes. Each path vertex maps

to a SAI+ disk, which is used to assign the vertex a position and a width, and to annotate it with

a junction if the corresponding disk is representative of one. The vertex positions and widths

can be adjusted and are not necessarily the same as the corresponding SAI+ disk centers and

radii, as we will see below.

258 Chapter 10. From 2D Shape to Strokes with CSFs

(a) (b) (c)

1

6

2

34

5

1 2

3
4

Figure 10.16: Stroke paths: Path construction from branch groups. (a) As long as no stroke graph con-
nects to itself, we create preliminary paths by removing disqualified branches. (b) If a
group connects to itself but is not closed, the path begins with a branch protruding from
a T- or Y-junction. The dashed blue lines (1 and 4) are splits associated with a T-junction,
while the dashed red lines (2 and 3) are splits associated with the Ψ-junction. (c) A dif-
ferent junction classification with two Ψ-junctions, leading to a closed branch group. In
this case the path begins and ends at any group flexure, or at a null-junction if there are
no flexures, or at an arbitrary vertex if neither is present. The arrows in (b) and (c) show
how the path continues through vertices with degree > 2. Note that each constitutive SAI+
branch is part of at most one path unless it is multi-traced.

10.5.1.1 Path construction

We first transform the branching structure of each branch group into a preliminary path.

We remove branches disqualified by morphological junctions (Figure 10.16.a), consider only

one branch for compound splits, and traverse the rest of the graph using the connectivity

determined by topological junctions (Figure 10.16.b, c). This results in a procedure that is

effectively similar to the one that is typically used to “prune” symmetry axes (Shaked and

Bruckstein, 1998), but it exploits junction analysis to determine which branches are non-

significant. After this procedure, each path vertex still maps to an SAI+ disk, with its radius

indicating the local thickness of a stroke, while a subset of these disks map to topological and

morphological junctions. The path vertices and widths are adjusted based on this mapping.

Blunt tip and compound split adjustment. A blunt tip disqualifies two branches from a

branch group and produces an end-vertex in the resulting path. The path usually ends too

early with respect to the shape outline. We adjust the terminal vertex by moving it to the

average position of the end points for the disqualified branch pair (Figure 10.17.a). For a

compound split, we replace the multiple paths derived from the split’s branches with a single

straight one connecting the average of the split concavity extrema to the average of the split

branch end points (Figure 10.17.b).

Ligature adjustment. The SAI+ disks for each resulting path are by definition maximal with

respect to the outline, but their radii and the path itself can locally deviate from the perceived

10.5. From Junctions to Stroke Representations 259

(a) (b)

Figure 10.17: Adjustment of a blunt-tip (a), and a T-junction with a compound split (b). The blunt-tip
disqualifies two of the branches incident to the fork (dashed blue) and the other branch
is extended to reach the outline. The compound T-junction replaces the branches associ-
ated with the split with a straight path segment. The segment is extended (dashed black)
to intersect with the opposite path.

(a) (b) (c) (d)

Figure 10.18: Examples of ligatures (top row: red segments) and their adjustments (bottom row: grey
lines from discarded SAI+ segments, black dashed lines used as connectors), for the case
of a: (a) flexure, (b) Y-junction, (c) Ψ-junction, and (d) T-junction. For the Y-junction
(b) and T-junction (d) cases, the path is extended (dashed black) to intersect with the
opposite path.

centerline and thickness of a stroke. This is especially apparent in ligatures near junctions,

for example causing the zig-zags in the green path around the two loops in Figure 10.16.a. We

follow a procedure similar to Macrini et al. (2011) and remove all path vertices that are part

of ligature regions produced by the concavities associated with any junction falling along the

path, unless the junction is a weak flexure. If this creates a gap in the path we close it in a

way that depends on the junction type. If the junction is a flexure, we replace the removed

vertices with a single vertex that maps to the flexure’s fork and is located at the intersection of

the tangent lines at the ends of the ligature segments. We set its disk radius to the maximum

of the disks for these end points (Figure 10.18.a). Otherwise, we use the tangents to compute

a cubic Hermite spline, sample it to create the vertices, and linearly interpolate the associated

end point radii (Figure 10.18.b,d).

Path and width-profile smoothing. The procedures above can still result in paths and width

profiles that contain undesirable variations. We remove such artefacts by smoothing the

260 Chapter 10. From 2D Shape to Strokes with CSFs

(a) (b) (c)

Figure 10.19: Adjusted stroke paths for three different glyphs. The spines, in black, are clean and plau-
sible, and the union of stroke paths, in color, closely approximates its glyph outline.

paths and the corresponding radii in a piecewise manner, along path segments defined be-

tween adjacent end-points and strong flexures. This guarantees that path vertices corre-

sponding to corners are not smoothed. In the examples given, we use a classic smoothing

spline method (Dierckx, 1975). When a path segment is bounded by two endpoints or two

elbows, we also check if it can be approximated with a straight line. To do so, we test the MSE

of a linear least square fit to the segment vertices. If the MSE is less than a user-configurable

ratio of the average path-segment width, we remove all the intermediate vertices resulting in

a straight segment. This procedure is particularly useful to adjust the paths for short glyph

parts such as serifs.

Path adjustment. Removing ligatures often disconnects T- and Y-junctions: we reconnect

these by moving the path endpoint to the intersection of the path’s end tangent and the other

junction path (Figure 10.18.b, d, Figure 10.17.b). A similar process is used in Chapter 11 to re-

connect paths for stylisation techniques that, while modifying paths, potentially disconnect

these. Additional details are given in the next chapter. Figure 10.19 shows the final derived

paths and width profiles for a few different glyphs.

10.5.2 Stroke Areas

Stroke areas are 2D shape pieces, where each piece is derived from a single branch group.

Stroke areas enable stylisations that depend on the shape of the corresponding stroke. They

are created by using junctions to partition the input shape into disjoint faces and then using

the branch groups to guide the assembly of these faces into stroke areas.

10.5.2.1 Planar map Q̄

We construct a planar map, Q̄, from the glyph outline and from edges derived from the junc-

tions. Each T-junction adds one edge to Q̄, connecting the origins of tangents on the ends

of its split (Figure 10.20.a). A multi-traced Y-junction adds two edges to Q̄, each taking the

direction of one of the tangents of the junction’s representative concavity and connecting the

concavity extremum to the first intersection with the outline (Figure 10.20.b). A branching

10.5. From Junctions to Stroke Representations 261

(a) (b) (c) (d)

Figure 10.20: Faces and edges of Q̄ for different junction types. The tangents determining the edges are
marked in black. (a) A T-junction adds one edge and produces two faces, one including
the two arc segments of the concavities’ contact regions. (b) A multi-traced Y-junction
adds two edges and produces three faces. (c) A branching Y-junction adds one edge and
produces two faces. (d) Three Ψ-junctions in the same area, adding 12 edges (3 quadri-
laterals).

Figure 10.21: Stroke areas for the letter “R” found in four different fonts. Note that the last result (to
the right) is based on a stroke group that contains a loop and crosses itself, producing a
stroke area with a hole.

Y-junction adds one edge to Q̄. If a split is assigned to the protruding branch, the junction

is treated identically to a T-junction. Otherwise we take the direction of one of the tangents

of the junction’s representative concavity and connect the concavity extremum to the first

intersection with the outline. The tangent is the one that is least aligned with the protrud-

ing branch (Figure 10.20.c). A Ψ-junction adds a quadrilateral to the graph. Two of its edges

connect the tangent origins of the non-crossing split endpoint pairs, the same ones used to

compute good continuation in Section 10.4.3. The other two edges connect the same tangent

origins along the splits (Figure 10.20.d).

Once Q̄ has been constructed, we create one stroke area for each group by performing

a union of some of the faces in Q̄. First, considering each group in turn, we construct an

initial seed area by taking the union of all disks given by the vertices of that graph. We then

assign to an area any associated face enclosed by the quadrilaterals added by a Ψ-junction

to Q̄. We also assign to a pair of areas any face associated with pairs of edges in Q̄ linked to

a multi-traced Y-junction. Finally, each remaining face is assigned to the area for which the

intersection of the face and the seed area is largest. Fig. 10.21 shows the resulting stroke areas

for the letter “R” in various fonts.

262 Chapter 10. From 2D Shape to Strokes with CSFs

(a) (b)

Figure 10.22: Quantitative evaluation with the make-me-a-hanzi dataset; ground truth is to the right.
(a) Our method derives the same stroke structure as that of the ground truth but one T-
junction (marked with a red circle) includes a stroke deformation. (b) All strokes are cor-
rectly identified by our method except for the middle area emphasized in red. We derive
one single stroke rather than two as in the ground truth because there is no sufficiently
salient concavity near the top left of that area.

10.6 Discussion and Results
Performance. The core segmentation procedure is written in the Python programming lan-

guage, and it depends on the CSF code developed in Chapter 7. Outline analysis and seg-

mentation together take an average of 2 seconds per glyph on an average laptop; normally

we precompute these for an entire font, but they could also be computed on demand and

cached.

Segmentation quality. Quantitative evaluation of the stroke segmentation results is difficult

because of a lack of ground truth for Western fonts. However, we can compare the segmen-

tation results with the make-me-a-hanzi dataset (Kishore, 2018), which includes outline and

stroke ground truth for a variety of simplified and traditional Chinese characters. We tuned

our parameters to give the highest accuracy for this dataset and then used these parameters

for all our segmentations on other fonts and other objects. Similarly to Kim et al. (2018) we

perform an “Intersection over Union” (IoU) test on the rasterised stroke areas. For each seg-

mented stroke area, we identify the most similar stroke from ground truth by maximizing

the intersection area. By rasterising at a resolution of 512× 512 we achieve an average per

pixel accuracy of 0.982, which is slightly better then the result of 0.958 reported by Kim et al.

(2018), which is based on a neural network approach. This accuracy result is influenced by a

few different stroke decompositions (Figure 10.22.b), as well as by a few inaccuracies in the

estimation of planar map edges (Figure 10.22.a). We consider a stroke to be incorrect if its

IoU is < 0.8, which does not include small errors like the one in Figure 10.22.a, and results in

a per-stroke accuracy of 0.98.

It should be noted that we do not rely on training data and certain ground-truth de-

compositions cannot be deduced from the outline alone because they depend on domain

knowledge. For example, “boxes” in Chinese characters should almost always be segmented

10.6. Discussion and Results 263

Figure 10.23: Stroke decomposition of silhouettes. The left mammal silhouette (from the PhyloPic
database, http://phylopic.org) results in strokes that capture its articulated struc-
ture. The right hand results gives a plausible reconstruction, but the segmentation devi-
ates somewhat from the perceived structure of a hand, e.g. with the pinkie being part of
the same “stroke” as the palm.

Y

Y

Figure 10.24: A glyph with a circular hole segmented at different scales. The circular region generates
different CSFs depending on the scale, resulting in the detection of two T-junctions in
(a) and (c) and two Y-junctions in (b). However, because the Y-junctions are classified as
branching, all scales result in the same, plausible stroke decomposition.

into three strokes. Sometimes there are outline details that lead to a correct segmentation,

but not always (Figure 10.22.b). Only 5% of the glyphs in the make-me-a-hanzi dataset had

segmentation errors that were not of this type; 10% had errors that could not be avoided

without domain knowledge, and 85% were segmented identically to the ground truth. From a

qualitative viewpoint, all of our segmentations (100%) produce strokes that create a readable

reconstruction and robust stylisation of the glyph. Refer to Appendix D.2 for some additional

examples from the make-me-a-hanzi dataset .

To explore further the generality of our approach, we have thus far tested our method

on one hundred fonts. Appendix D.3 shows a number of example segmentations for fonts

in different styles and languages. Plausible and useful segmentation results of individual

glyphs are obtained in the vast majority of cases. The most common failure case is for very

bold or thick glyphs in which the average stroke thickness is larger than the average stroke

length.

http://phylopic.org

264 Chapter 10. From 2D Shape to Strokes with CSFs

Other considerations. The segmentation also gives useful results on other types of non-

glyph shapes as long as there is a recoverable articulated or branching structure (Figure

10.23). We leave for the future work, the exploration, further development and comparison

with other methods of our approach when applied to such objects.

As discussed in Chapter 7 the discrete Voronoi diagram is highly sensitive to circular or

nearly-circular outlines, which can give results that vary with scale and sampling frequency

(Figure 10.24). However, this potential issue does not seem thus far to have serious adverse

effects on our segmentation results. Nevertheless, a possible alternative would be to sim-

ply combine the current Voronoi skeleton approximation of the SAT, when in the presence

of nearly circular parts, with a robust method for the detection and representation of such

shapes (Manzanera et al., 2016).

10.7 Conclusion
In this chapter we presented concepts and algorithms to automatically segment font glyphs

into strokes. The segmentation relies on a geometric analysis of a glyph based on CSFs, and

does not require training data. We used CSFs as the basis for implementing an experimentally

validated model of good continuation and to derive two innovative representations, namely:

1. Splits that link concavities and describe potential shape divisions.

2. A set of six junction types that distinguish topological and morphological structures.

The extraction of a stroke structure from a glyph outline can be used to generate a variety

of stylisations of the input (Figure 10.1), which can be explored in real time by a user or de-

signer. The next chapter will demonstrate a few of these use cases, and in particular styli-

sations that exploit the stroke representations developed in this thesis. This segmentation

could also be useful in related applications like automatic font hinting (Shamir, 2003), seg-

menting characters in historical documents (Lamiroy et al., 2015), painterly applications of

robotics (Deussen et al., 2012), stylisation methods that require taking glyph structure into

account (Zou et al., 2016), and animated reconstructions of arbitrary glyphs (Gingold et al.,

2008).

The current trend in the computational science field, is to solve these kinds of segmen-

tation and stylisation problems with a data-driven approach, often with a preference for end-

to-end solutions combining one or more statistical models. These methods typically rely on

a large body of human-labelled training data. We instead demonstrated a solution that re-

lies on experimentally-validated principles of visual perception and computational geome-

try concepts. The advantage of our approach is that it is adaptable to fonts for which training

data might be scarce or non-existent and to glyphs that do not match the training data. Our

solution requires tuning a few parameters, but these have intuitive visual and perceptual in-

terpretations and can be adjusted by the user for the required use case.

10.7. Conclusion 265

In future research, we plan to explore how data-driven solutions could be combined

with our approach. For example, we could use data to incorporate language-specific domain

knowledge. More fundamentally, we could use a data-driven approach to set parameters in

the junction identification stage. We hypothesize that training on a very small number of

user-labelled examples could be enough to create a mapping between forks, their associated

CSFs, and the six different junction types we introduced. Developing a similar procedure

with automatically labelled examples is also an interesting avenue of future research. While

ground truth data for Western fonts is scarse, a stroke-based font description language such

as METAFONT (Knuth, 1999) can be used to automatically generate parametric variations

of strokes, as well as variations of the glyph outlines resulting from their combination. The

resulting training pairs could be used to drive a fully automatic data-driven solution to the

stroke segmentation problem. Finally, the method presented in this chapter already has po-

tential uses in producing reliable training data for sequence-based generative models like

the one developed by Ha and Eck (2018) for SVG drawings. While similar methods have been

successfully used to reproduce handwriting (Graves, 2013), or Chinese characters (Tang et al.,

2019), to the best of our knowledge this approach remains to be further developed and tested

with a variety of fonts and styles.

Chapter 11

Font stylisation

Figure 11.1: Stylisation of the word GRAFFITI generated from recovered stroke paths using our meth-
ods for segmentation (Chapter 10) and strokes (Chapter 6).

Stroke paths and areas (Chapter 10) are the basis for a variety of stylisation methods. Ground-

ing text stylisation on fonts has the advantage that it is agnostic to the language or writing sys-

tem and the embedded kerning information can be used to determine inter-glyph spacing,

which is known to be difficult to achieve with methods that create stylized text from scratch

(Haines et al., 2016).

While the previously described segmentation procedure runs offline, the stylisation pro-

cedures described in this chapter run in real-time and support the exploration of different

stylisations through an interactive user interface. All the procedures are written in C++ using

OpenGL for hardware-accelerated rendering.

11.1 Path-based stylisation
Stroke paths capture a plausible way in which a glyph could be drawn and provide a rich

structural description that enables a range of stroke-based stylisations. These range from

268 Chapter 11. Font stylisation

Figure 11.2: Hershey font stylisation (black) overlayed on the original font (gray).

design-oriented stylisations based on skeletal strokes, to stylisations that resemble calligra-

phy and graffiti art, which exploit the stroking methods described in the previous chapters.

11.1.1 From stroke paths to strokes

The first step to construct a stroke stylisation from a set of stroke pathsis to augment these

paths with a linear vertex-ordering. While for certain stylisations an arbitrary ordering can be

sufficient, many other types of strokes are not necessarily invariant to the direction of traver-

sal. The following examples all use a simple topological sorting heuristic that rewards top-

to-bottom and left-to-right movements. However, the path representation is also suitable for

more sophisticated approaches (Fu et al., 2011; Tang et al., 2017). The topological sorting

procedure results in a sequence of densely sampled polylines. Each polyline vertex maps to

Figure 11.3: Font stylisation with skeletal strokes. The left column shows the text in the original font.
The right column shows the corresponding stroke stylisations. The first example on the
right shows the result of using skeletal strokes as implemented in Adobe Illustrator to
change weight, cap, and join styles; the other three show various decorative effects. The
strokes in the last example use variable width.

11.1. Path-based stylisation 269

a path vertex, together with the corresponding width and junction annotation if present.

The initially dense polyline representation can be used to produce some simple stylisa-

tions. For example, we can convert it into spines consisting of Bézier curves, which can then

be used to generate “Hershey fonts”, which have glyphs consisting of constant-width strokes

(Figure 11.2). Such fonts are well-suited for fabrication and manufacturing applications. The

same spines can be used to construct skeletal strokes (Section 3.6.2) (Asente, 2010), which

enable a variety of glyph stylisations ranging from the more painterly to the more decorative

effects (Figure 11.3).

11.1.2 Simplification: constructing motor plans

The stroke stylisation methods described in the previous chapters are designed to work with

motor plans consisting of relatively sparse polylines. We convert an the initially dense rep-

resentation into a sparse one by using polyline simplification. The simplification can be

done with a variety of methods (Luebke, 2001), but we choose to use Discrete Contour Evolu-

tion (Latecki and Lakämper, 1998) (Figure 11.4.a), which selectively removes polyline vertices

based on a circular arc-length relevance measure (Table 3.5, Chapter 3). A vertex is removed if

its relevance is less than a user selected threshold and we never remove vertices correspond-

ing to strong flexures by assigning these a maximum relevance. Because the simplification

method removes vertices, the mapping from the remaining spine vertices to junctions and

widths is always maintained.

Adjustment. After simplification, we adjust the spine endpoints to the closest intersection

of end-tangents with the opposite spine, with a procedure identical to the one used when

constructing stroke paths. The stylisation procedures that follow also require a similar ad-

justment, with the addition of a few steps that depend on the method and are discussed

(a)

(b)

(c)

Figure 11.4: Simplification and schematisation: (a) Path simplification (kept vertices as red dots). Spine
schematisation (Dwyer et al., 2008): (b) quantising orientations to multiples of 60◦, and (c)
restricting orientations to 30◦ and 120◦.

270 Chapter 11. Font stylisation

(a) (b) (c) (d)

Figure 11.5: Mapping to flexures (blue circles) for (b,c) simplified and (d) schematised spines.

when relevant.

11.1.3 Structural modifiers

The connectivity information encoded by topological junctions can be used to transform a

motor plan through structural modifiers that enable glyph stylisations that resemble graffiti

or calligraphy, while taking the glyph structure into account.

11.1.3.1 Schematisation

Schematisation quantises the orientations of spine segments and results in regular-looking

polygonisations and stylistic abstractions of a glyph structure (Figure 11.4.b,c). These kinds

of regular structures can be observed in some graffiti letter stylisations. Ferri (2016) includes a

similar construct in his “form functions”, which he hypothesises underlie the genesis of graf-

fiti styles (refer to Table B.2, F7). We implement schematisation with a so-called C -oriented

method (Nöllenburg, 2014), which approximates a polyline with another one consisting of

segments that are parallel to a discrete set of orientations C . We use a least-squares solution

to the C -oriented problem proposed by Dwyer et al. (2008) for a metro-map generalisation

task.

The schematisation procedure can alter the number of vertices in a spine and this can

corrupt the mapping from spine vertices to flexures, which is necessary to drive the subse-

quent stylisation procedures. To recover this mapping we compute a set of correspondences

between the schematised and non-schematised spine vertices (Figure 11.5). For this pur-

pose, we use Dynamic Time Warping (Gold and Sharir, 2018) with the Euclidean distance

between vertices, and then assign a flexure to a schematised vertex if it is assigned to any

corresponding non-schematised vertex.

Structural adjustment. Schematisation is applied to each spine separately which can cor-

rupt the motor plan connectivity, making it difficult to apply intersection-based adjustments

to the spine endpoints. While a correct topology could be imposed with constraint solving

algorithms (Nöllenburg, 2014), we observe that this issue mostly affects spines such as the

11.1. Path-based stylisation 271

(a) (b) (c) (d)

Figure 11.6: Structural adjustment steps for a schematised letter “A”. (a) Unstylised stroke spines af-
ter reconstruction. Note that incidence relations for T-junctions have been already cor-
rected as described in Figure 10.19. (b) Schematisation can corrupt topological relations
among strokes. (c) We re-establish these by shifting strokes that are covered by a single
T-junction or branching Y-junction. Note that the triangular part of the “A” is covered by
two T-junctions, so it is not adjusted. (d) A second adjustment step reconnects all stroke
endpoints.

lower-left serif in Figure 11.6.b, which is characterized by another spine ending within it. This

kind of configuration can be detected by counting the number of T-junctions and branching

Y-junctions along a spine. If, for a given spine, only one such junction exists, we translate

the spine by p ′ −p , where p is the original endpoint of the incident spine and p ′ is the end-

point after schematisation (Figure 11.6.c). Once this procedure is executed, we can adjust the

endpoints with the same tangent intersection procedure as before (Figure 11.6.d).

11.1.3.2 Structural decorations.

Topological junctions are also useful to identify spine segments that can be altered for ad-

ditional stylisation effects. In one such method, we extend spine end segments that do not

terminate in any topological junction (Figure 11.7.a), by a configurable amount that is pro-

portional to the length of the segment projection on the horizontal or vertical axis. Figure

(a) (a) (b) (c)

Figure 11.7: Structural decoration steps for a schematised letter “A”. (a) Schematised “A”. The two serifs
end-points do not terminate in any topological junction. (b) Extending the serifs for effect.
(c) Decorating the serifs with a user defined motor plan (top left), that replaces the serif
red spine segment (in this case the whole spine). The replacement is made by rotating the
motor plan so that its first segment (also in red) matches the replaced spine segment. (d)
Example calligraphic stylisation of the resulting motor plan.

272 Chapter 11. Font stylisation

11.7.b shows how this method can be used to extend the serifs of a glyph. In a second method,

we replace these end segments with a user-defined motor plan (Figure 11.7.c), resulting in a

procedure that is similar to a shape grammar (Stiny and Gips, 1972). The motor plan is trans-

formed so that its first spine segment matches the end segment that is replaced. This method

can be used to mimic the “flourishes” that sometimes adorn calligraphic letterforms or simi-

lar decorative elements that can be observed in graffiti stylised letters (Figure 11.7.d).

11.1.4 Calligraphic Stylisation

The simplified and structurally modified motor plans can be used to construct a variety of

calligraphic stylisations that mimic the aesthetics of certain kinds of calligraphic writing (Fig-

ures 10.1.e,f and 11.8) or graffiti tags (Figure 11.11).

We generate kinematic realisations of the motor plans using MIC with semi-tied covari-

ances and one Gaussian component for each motor plan vertex. Each component is scaled

by a factor in [0,1] that depends on whether a vertex maps to a flexure or not, which allows

to produce a variation of curvature that is similar to the original glyph. If a vertex maps to

flexure the scaling factor is given by:

max(r,rmax)

rmax
,

where r is the radius of curvature associated with the flexure and rmax is a user-configurable

Figure 11.8: Calligraphic stylisations generated by combining schematisation (Dwyer et al., 2008) with
kinematic realisations generated with MIC (Chapter 5) and kinematics-based brush ren-
dering (Chapter 4).

11.1. Path-based stylisation 273

Figure 11.9: Calligraphic stylisations of the string “AUTOGRAFF” with brush thickness proportional to
the path width profiles and using schematisation with multiples of 45◦ starting from a user
selected initial orientation (different for each row).

Figure 11.10: Painterly stylisation of the Chinese string “qiyun shengdong” (left), using multiple over-
lapping skeletal strokes constructed along kinematic realisations of the schematised
spines.

maximum radius value. If the vertex does not map to any flexure, the factor is set to its max-

imum value of 1. Similarly to Chapter 5, different kinematic realisations of a motor plan are

produced by also globally varying the scale, isotropy and the orientation of the covariance

ellipses.

Different combinations of structural modifiers, kinematic realisations and stroke ren-

dering methods (discussed in Chapters 4 and 5) can be varied interactively, resulting in stroke

stylisations that resemble instances of calligraphy (Figures 11.9 and 11.10) or graffiti tags (Fig-

ure 11.11).

274 Chapter 11. Font stylisation

Figure 11.11: Three different tag-like stylisations of the word “RASER”; below each is the correspond-
ing font and glyph-spacing. Note that, the middle stylisation is done by replacing near
vertical spine segments with a user-defined motor plan.

(a) (b)

Figure 11.12: Structural adjustment steps for a kinematic realisation of a schematised “A”. (a) Using the
adjusted schematised motor plan (red) from Figure 11.6 to produce a kinematic realisa-
tion (black) can also corrupt the incidence relations among strokes. (b) A last adjustment
step moves the non-smoothed spine endpoints (the middle section of the "A") so they
terminate at the intersection with the smoothed trajectory.

11.1.4.1 Smoothed stroke adjustment.

Smoothing also can corrupt the adjacency relations between strokes (Figure 11.12.a). To ad-

just these configurations, we perform a first smoothing pass on each spine resulting in an

initial set of trajectories. We then adjust the end-vertices of the spines so that their endpoints

are incident to these trajectories (Figure 11.12.b). Finally we perform a second smoothing

pass on the adjusted spines.

11.1.5 Outline Stylisation

A similar procedure to the one above can be used with the outline based stroking method

described in Chapter 6, resulting in glyph stylisations that mimic the appearance of graffiti

pieces (Figures 11.17 and 11.13). The local and global smoothness is determined similarly

to the calligraphic stylisation case, but we also generate a piecewise-smoothed stroke if the

11.1. Path-based stylisation 275

Figure 11.13: Outline-based graffiti stylisation. Top: the source fonts. Middle: strokes and schematised
spines (red). Bottom: Layered and rendered graffiti stylisations.

smoothness of a vertex is below a user defined threshold (Figure 11.14). This allows us to

reproduce strokes that combine smooth and straight portions and to keep corners with in-

creased levels of smoothing.

Figure 11.14: Progressive smoothing of a letter “P” (Arial) with a corner and consisting of a single stroke.
The corner is maintained across increasing levels of smoothing.

(a) (b)

Figure 11.15: Per-segment width profiles. (a) The width of each simplified segment is proportional to
the average width of the intermediate scaffoldpath vertices. (b) Parametric width profile
depending on the direction of the spine segments.

276 Chapter 11. Font stylisation

(a) (b) (c) (d)

Figure 11.16: Structural adjustment steps for the outlined strokes of a schematised “A”. (a) Without ad-
justment, the sides of the strokes can terminate outside of the stylised glyph area. (b) The
stroke sides are adjusted so they terminate at the intersection with a thinner version of the
opposite stroke. (c) The same issue for smoothed stroke outlines. (d) For the smoothed
case, the polygonal outline (i.e. the motor plan, in red) is adjusted, resulting in new trajec-
tories that terminate at the intersection with the thinned (and smooth) opposite stroke.

The width profile for the strokes can be computed from the scaffold or parametrically.

When using the scaffold we assign each spine segment a constant width, given by the average

width of the scaffold vertices spanned by the

The width profile for the strokes can be computed from the corresponding paths or

parametrically. When using the paths, we assign each spine segment a constant width, given

by the average width of the path vertices spanned by the segment (Figure 11.15.a). Other-

wise, the width profile can be computed parametrically with one of the methods described

in Chapter 6, e.g. based on the orientation of each spine segment (Figure 11.15.b).

The local depth ordering of strokes is either determined randomly or with a point-and-

click procedure identical to the one described in Chapter 6. We automatically add local

unions for partitions that coincide with topological junctions, but these can also be disabled

for different stylisation effects.

11.1.5.1 Outlined stroke adjustment.

The adjustment procedure is slightly different for outline based strokes (Section 6.1.1), since

the thickened stroke sides can overshoot the opposite strokes (Figure 11.16.a). To adjust these

configurations we first duplicate all the strokes and scale the corresponding width profile by

an arbitrarily small amount. We then adjust the end-segments of the polygonal sides so their

end-vertices are incident to the opposite scaled stroke (Figure 11.16.b). Similarly to the case

of calligraphic stylisation, when a stroke outline is a smooth trajectory (Figure 11.16.c), we

adjust the corresponding polygonal outline, which results in a different and adjusted trajec-

tory (Figure 11.16.d).

11.1. Path-based stylisation 277

Figure 11.17: Combining schematisation with the outline-based graffiti strokes (Chapter 6) to generate
graffiti stylisations of strings in different fonts and languages.

11.1.6 Stroke animation

The topologically sorted strokes can be easily animated with a variety of methods. Calli-

graphic strokes can easily be rendered and animated with the same techniques discussed in

Chapters 4 and 5. This results in natural-looking animations that reflect kinematics that are

similar to a human hand motion (Figure 11.18). Stylized brush animations can also be gen-

278 Chapter 11. Font stylisation

(a) (c) (d)(b)

Figure 11.18: Animating the drawing of a stylized “R”.

(a) (b)

Figure 11.19: Abstract stroke-based animations. (a) Applying an animated prototype (left) to a styled
letter “R”. (b) Particle animation following the stroke spines and leaving traces.

erated by incrementally visualizing a skeletal stroke, animating the skeletal stroke prototype

itself (Figure 11.19.a), or by animating a particle system that follows the stroke spines (Figure

11.19.b).

Stroke areas can also potentially be used to create an animated reconstruction of the

glyph with an automatic version of the template-based method developed by Gingold et al.

(2008). We did some preliminary tests in this direction, but the development of a working

prototype is left as future work.

11.2 Area-Based Stylisation: Stroke Similarity
The stroke area segmentation of the outline is the basis of a similarity measure among strokes

in a complete font. We compute the difference between two stroke areas by aligning their

centroids, rasterising them, and then measuring the Jaccard distance (Deza and Deza, 2013,

p. 299) between the resulting bitmaps: i.e. 1 minus the intersection divided by the union. If

one stroke terminates in a topological junction and the other does not, the distance takes

the maximum value of 1. We then group strokes using single-linkage agglomerative cluster-

ing (Murphy, 2012) and determine clusters based on a user-configurable threshold. While

the distance is computed offline, the clustering procedure is interactive, and users can adjust

the threshold to their preference. We then replace each stroke area in a cluster with an artistic

rendering based on the shape, generating stylisations that apply uniformly across an entire

font (Figures 10.1.i and 11.20).

11.3. Conclusions 279

Figure 11.20: Stylisation based on similarity between stroke areas. In the first row, strokes are color-
coded based on common clusters. In the second row, each stroke in a cluster is replaced
with the same custom artwork. Note that including junction structure in the stroke simi-
larity metric allows distinct stylisations to apply to otherwise similar strokes, like the hor-
izontal strokes in R, P, L, and A. Artwork ©Daichi Ito.

11.3 Conclusions
In this chapter, I have demonstrated how the stroke segmentation procedure developed in

Chapter 10 can be used to generate a rich variety of stylisations and animations of a font.

The range of stylisations includes design-oriented stylisations based on skeletal strokes,

schematic abstractions of a glyph structure, calligraphic or graffiti stylisations and similarity-

based replacements of parts of a glyph.

The proposed methods achieve one of the objectives set in the introduction (Chapter

1) of generating graffiti stylised strings in a variety of languages and styles. By exploiting the

latent stroke structure encoded by font outlines, the proposed solution transforms a much

more challenging problem of glyph synthesis (Hofstadter et al., 1993) into a simpler one of

inverse modeling and stylisation, where the wealth of publicly available fonts becomes a rich

source of possible glyph structures.

The resulting system allows a user to rapidly generate and customise high quality graffiti

textures, which can be easily applied to the surfaces of a computer generated environment.

Figure 11.21.a shows examples of the output of this system textured in an environment that

can be explored in real-time with the Unreal® game engine. Currently, this requires the user

to manually apply the textures where desired, but developing automatic methods to do so

is an interesting avenue of future research. Likewise, the tag textures shown in the environ-

ment are currently static, but animating their reproduction with a full-body inverse kinemat-

ics procedure is possible and another promising research avenue (Figure 11.21.b). Another

interesting application to explore is the use of augmented reality (AR) technologies to apply

the generated graffiti to real-world walls (Figure 11.21.c).

1https://github.com/Squashwell/bepuik/tree/bepuik
2https://apps.apple.com/us/app/wallr

https://github.com/Squashwell/bepuik/tree/bepuik
https://apps.apple.com/us/app/wallr

280 Chapter 11. Font stylisation

(a)

(b) (c)

Figure 11.21: Synthetic graffiti in the virtual and real world. (a) Textures generated by our system ap-
plied in a virtual environment within the Unreal game engine (by Epic Games). (b) Proto-
type for full-body inverse kinematics animation of the production of a tag. Given a hand
trajectory, the full body inverse kinematics are computed using the Bepuik1 tool for the
Blender 3D package. (c) AR graffiti experiment using the WALLR2 application.

While the system is capable of generating convincing graffiti stylisation, this still requires

an effort on the part of the user to appropriately choose a set of stylisation parameters that

work well with a given font or combination of glyphs. An evaluation of the quality of the

stylisation techniques is beyond the scope of this work. Our main goal was to enable a wide

variety of stroke-based stylisations and the proposed implementation provides a “sandbox”

in which the user can explore many different options in real time. These range from readable

stylisations to highly abstract renditions that are still evocative of the original font structure,

but that are difficult or impossible to read. This applies especially to the calligraphic and

graffiti stylisation methods, which operate in a domain where aesthetics take priority over

readability (Craveiro, 2017).

Chapter 12

Conclusion

In this thesis, I have presented a series of primitives, methods and tools meant to computa-

tionally reproduce the appearance of graffiti art as well as certain related forms of calligraphy.

The work initially stems from my previous experience as a graffiti artist. It builds on a per-

sonal introspection into a design process that I have assimilated over the years, but also on

feedback and knowledge gained from peer graffiti artists, some of whom have shared their

ideas in the form of published books (Ferri, 2016; Arte, 2015; Kimvall, 2014). While being

informed from my personal experience and intuitions, the implementation of the methods

developed across the thesis is grounded on an in-depth study of methods, principles and

results in a number of fields, including computer graphics, computational motor control,

graphonomics, visual perception and shape analysis.

In the introduction, I did set two principal thesis objectives:

1. Implementing a system that enables a user to rapidly “sketch” graffiti in a variety of

styles and with a user interface that is similar to the one typically used in standard

vector-drawing applications.

2. Generating high quality graffiti content that can be customised by a user and can be

textured in virtual environments in games and in movies.

These objectives are intended to address the current lack of existing research or methods that

are aimed at the computational generation of graffiti art.

The resulting solutions are also conceived to address a number of related challenges

and limitations that I have identified in the attempt to design graffiti in conventional vector-

based design applications, or while observing graffiti art as it can be seen textured in video

games and movies; namely:

1. The difficulty to specify, edit and manipulate calligraphic curves, such as the ones that

are typically seen in graffiti art, with conventional curve generation and editing meth-

ods.

282 Chapter 12. Conclusion

Figure 12.1: Calligraphic stylisation of the word “CAGD”.

2. The difficulty to reproduce the often self-overlapping and intertwined patterns that can

be observed in graffiti pieces, with the standard back-to-front object layering typically

assumed in vector-design packages or methods.

3. The low realism, variation and customisability of graffiti that can be seen textured in

computer generated environments.

The methods discussed in the thesis are developed for the specific use case of graffiti art.

However, I have shown that reaching the objectives above, results in methods that are gen-

erally useful in a broader design spectrum, with applications in calligraphy, typography

and pattern design. The resulting system is meant to be compatible with standard CAGD

pipelines, leading to the same acronym but a more specific goal of “Computer Aided Graffiti

Design” (Figure 12.1).1 According to the prefixed objectives, I have organised the thesis into

two main parts, the results of which results are briefly summarised and discussed next.

12.1 Part I: Stroke primitives
To describe a variety of graffiti styles with a similar framework, I have proposed a a two-

level representation of stylised letterforms, consisting of a motor plan and a set of stroke

primitives.

The motor plan is a schematic representation of a series of idealised movements that

trace a stylised version of the letterform. Strokes materialise these movements with stylised

traces or outlines, finally resulting in different kinds of letter stylisations. The motor plan is

similar to certain end-point representations of movement (Plamondon, 1993; Maarse, 1987)

that are hypothesised to occur in the brain (Flash and Hochner, 2005). It consists of a sparse

sequence of points, that is easy to specify and edit, similarly to the control polygon typically

used to specify curves in standard CAGD applications. It can be constructed manually, with

a simple point-and-click procedure, or automatically from a set of traces (Chapter 8) or from

the outlines of a glyph (Chapter 10 and Chapter 11).

1While still keeping geometry in the loop.

12.1. Part I: Stroke primitives 283

I have emphasised early on that the fundamental “atom” of graffiti art is the tag, a highly

stylised signature, the visual quality of which is directly related to the spontaneity and skill

with which its drawing movements are executed. In order to reproduce the “hand style” that

is used to produce tags I proposed a “movement centric” approach to curve generation and

a related concept of “style by kinematics”, in which different stylisations of a curve are pro-

duced by varying the parameters of a movement that follows a common motor plan. I have

demonstrated two possible implementations of this approach: one, the ΣΛ model (Chapter

4), based on a space-time superposition of ballistic movement primitives, and a second, MIC

(Chapter 5), based on a probabilistic formulation of optimal control. Both methods produce

movement trajectories with kinematic properties that are characteristic of human hand or

arm movements, such as a high degree of trajectory smoothness (Engelbrecht, 2001; Sosnik

et al., 2004), bell-shaped speed profiles (Morasso, 1981; Plamondon et al., 1993) or an inverse

relation between trajectory speed and curvature, i.e. isogony (Viviani and Terzuolo, 1982;

Lacquaniti et al., 1983). These properties are useful to generate natural stroke animations,

or to vary brush thickness or density in order to mimic ink deposition during drawing move-

ments. Furthermore, the parameterisation of both models implicitly defines variations of

a trajectory that reproduce the variability that is typically observed in multiple instances of

human writing or drawing. I have demonstrated examples of how these properties can be

advantageous to reproduce instances of graffiti tags and how similar results are difficult to

achieve with conventional curve generation methods such as Bézier curves.

In Chapter 6, I demonstrated how the same movement centric approach is useful to

generate outline-based strokes, which can be combined to reproduce the appearance of a

diversity of graffiti styles other than tags. Again, the method mimics a sketching procedure

that might be followed by a graffiti artist while tracing a stylised stroke outline. Different types

of strokes and stylisations are achieved by varying the way in which these tracing movements

evolve. This outline based stroke representation also enables self-overlaps as well as local

layering and union effects that are difficult to achieve in conventional vector-design packages

(Asente et al., 2007; McCann and Pollard, 2009), and this facilitates the reproduction of these

same visual qualities that can be often observed in graffiti art.

I have justified the choice of a movement centric approach to curve generation with a

hypothesis of “embodied aesthetics”(Freedberg and Gallese, 2007) suggesting that the ob-

servation of a static trace, such as the mark left by a brush, produces a recovery of a likely

generative movement in the viewer. Based on commonly held knowledge in the graffiti art

community (Ferri, 2016; Craveiro, 2017), but also among calligraphers (Briem et al., 1983;

Wang, 2013), I have adopted the hypothesis that the qualities of a latent generative movement

also influences the aesthetic appreciation of the resulting trace. Based on this hypothesis, I

have suggested that the same should hold for the traces of a computer generated movement.

While this remains a conjecture, the methods developed in this thesis have enabled an on-

284 Chapter 12. Conclusion

going series of experiments (Chamberlain et al., 2019, 2020) , which suggest the validity of

this hypothesis, at least for the case of “expert” viewers with a prior experience in the arts. An

overview of these early results is given in Section 12.4.4.

12.2 Part II: Graffiti content generation
In the second part of the thesis I have exploited the primitives developed in the first, in order

to develop a system in which a user is able to (i) vary and stylise existing traces of tags or

handwriting and to (ii) generate and customise graffiti text strings in a variety of styles and

with arbitrary languages and writing systems.

To achieve the first goal, I developed a method that recovers a motor plan and a set of

kinematic (ΣΛ) parameters from from the geometry of a static trace (Chapter 8). This re-

construction effectively separates a structural (motor plan) and kinematic (remaining ΣΛ

parameters) component from a given trace geometry, which enables a user to edit, vary, ren-

der and animate the trace with procedures that are similar to the ones discussed in Chapter

4. I also demonstrated how this separation can be exploited to implement a novel example-

driven stylisation procedure (Chapter 9) that is conceptually similar to a number of “style

transfer” methods that rely on some form of separation between a descriptor of “style” and a

descriptor of “content” (Hertzmann et al., 2001, 2002; Li et al., 2013; Gatys et al., 2015). The

novelty of the proposed approach is the use of kinematics as a descriptor of (hand) style.

The second goal of generating graffiti strings in different styles and languages was per-

haps the most challenging problem in this thesis. In his book Metamagical Themas (1985),

Douglas Hofstadter has pointed out the difficulty of this kind of problem, which he compared

to “knobbifying” the alphabet, that is finding a general and finite set of parameters that can

be used to reproduce the enormous variety of possible structures and styles that a letterform

can take. Rather than solving this ill-posed problem, which pertains more to the fields of

computational creativity (Boden, 2003) and cognitive science, I have proposed a still chal-

lenging but more pragmatic solution: recovering useful strokes from the outlines of a given

font (Chapter 10). While the proposed solution might leave some unsatisfied, it effectively

tackles the letterform generation problem by exploiting the wealth of publicly available fonts

as a source for possible letter structures and styles.

Both stylisation methods described in the second part of the thesis rely on the recov-

ery of stroke primitives that reconstruct a given input geometry, which functions as a “seed”

that generates diverse instances of synthetic graffiti. Seeking ways to solve this reconstruc-

tion problem has led to the development of curvilinear shape features (CSFs), a novel “con-

tour + boundary” shape descriptor inspired to the work of Leyton (1988) and based on the

computation of local symmetry axes (Chapter 7). CSFs lead to the definition of the CASA,

an extended version of Blum’s SA (Blum, 1973) with branches terminating at all curvature

extrema. In Chapter 8, I’ve shown how CSFs can be used to accurately identify curvature ex-

12.3. Summary of Contributions 285

trema and to infer a plausible generative movement for a given trace, by exploiting the ΣΛ

parameterisation together with the isogony principle. In Chapter 10, I’ve shown how CSFs,

together with the CASA, can be used to characterise glyph outlines with a perceptually in-

spired measure of good continuation and to segment these outlines into potentially crossing

or overlapping strokes. I expect to identify many more use-cases for CSFs in my future re-

search, and I hope that this representation will prove useful to others, beyond the scope of

this thesis.

12.3 Summary of Contributions
The main contribution of this thesis is a set of tools and a methodology for the computa-

tional reproduction of graffiti art. In general, this adds a previously neglected art form to the

ones that have been studied in the computer graphics literature and in the growing field of

NPAR (Kyprianidis et al., 2013). From a practical standpoint, the resulting system is designed

to fit into a standard vector-design pipeline and to let a user focus on high-level composi-

tional aspects, while the system takes care of producing outputs that are similar to graffiti

art.

At the same time, the objective to model this art form has led to a number of contribu-

tions, the utility of which extends to the wider domains of computer graphics and even more

generally to computational shape analysis:

• A movement centric approach to curve generation aimed at reproducing hand-drawn

or written traces, taking into account well known properties of human hand/arm

movements (Chapters 4 & 5) and consequently enabling realistic modeling of variabil-

ity, natural looking stroke animations and kinematics-based rendering of strokes.

• A semi-tied covariance formulation for the generation of calligraphic stylisations with

optimal control and a reduced number of open parameters (Chapter 5).

• An extension to skeletal strokes that enables self-overlaps and smooth outlines that

mimic the ones produced with a drawing movement (Chapter 6).

• Curvilinear Shape Features (CSFs), a novel representation that describe convex and

concave outline or contour features (Chapter 7).

• Curvilinear Augmented Symmetry Axis (CASA), an augmented symmetry axis that in-

clude features missed by the traditional definition according to Blum (Chapter 7).

• A novel example-driven curve stylisation method that uses movement kinematics as a

feature representation and as a descriptor of style (Chapter 9).

• A novel geometry-based segmentation method that can decomposes fonts into poten-

tially crossing and overlapping strokes (Chapter 10).

286 Chapter 12. Conclusion

More generally, the proposed subject of study has proven to be useful beyond the ini-

tially set artistic and design-oriented goals. Graffiti art is a peculiar art form because it re-

volves around stylisations and customisations applied to letterforms, with a varied but well

defined set of visual conventions and procedures (Kimvall, 2014; Ferri, 2016), involving the

execution of skilled movements, and where letterforms are perceptual units that involve both

shape (Sanocki, 1992) and motor (James and Gauthier, 2006) representations in the brain. As

previously mentioned, the methods and ideas developed in this thesis have contributed to

the development of a series of ongoing experiments in the field of empirical aesthetics, aimed

at studying and understanding the links between the kinematic qualities of drawing move-

ments and the perceived aesthetic quality of the resulting traces. The results of the experi-

ments have contributed to support the hypotheses underlying this thesis, and the methods

developed in this thesis have contributed in systematically generating stimuli for the experi-

mental procedures. I argue that this kind of cross-disciplinary feedback loop can contribute

to the development of more accurate and sophisticated computational models of a given art

form while contributing, at the same time, to a better understanding of the complex mental

and physical processes involved in art-making.

12.4 Limitations and future work
The presented work is not free from limitations, and the most important ones are sum-

marised and discussed next. Those limitations also open up a number of paths for future

research, which are also discussed in the following sections.

12.4.1 ΣΛmodel

Concerning the ΣΛmodel, I made the choice of keeping the lognormal shape parameters µi

and σi fixed to predefined values, given the observation that they produce a negligible effect

on the trajectory geometry. However, the inconclusive results discussed in the conclusion

of Chapter 8 suggest that a more rigorous analysis of these parameters’ effects on trajectory

kinematics is useful , especially in sight of comparisons with other physiologically plausible

movement models such as minimum jerk (Section 8.4). One way to determine the parame-

ters is to first (i) reconstruct various digitised tags with one of the existing kinematics-based

ΣΛ parameter estimation methods (O’Reilly and Plamondon, 2008; Plamondon et al., 2014;

Fischer et al., 2014; Ferrer et al., 2018) and then (ii) compute µi ,σi from the average of the

parameter estimates. However, it should be noted that these methods also make specific

assumptions when reconstructing a trajectory, and these assumptions are likely to produce

differing values of µi and σi .

As discussed in Chapter 4, the ΣΛ trajectory generation method still lacks a principled

way to explore different stylisations of a motor plan with few parameters, such as the ap-

proach we have seen with MIC together with semi-tied covariances (Section 5.2.2) or multiple

12.4. Limitations and future work 287

(a) (b) (c)

Figure 12.2: Comparison of dynamic B-splines with MIC. (a) An outline based stroke (Chapter 6) gen-
erated with the dynamic B-spline method of Shinoda et al. (2003). Comparison of (b) a
calligraphic trajectory generated with the method of Shinoda et al. (2003), and (c) a similar
trajectory generated with MIC and a 3rd order system. The two trajectories use the same
semi-tied covariance structure. Note that the B-spline appears to have a lower degree of
smoothness near the loci circled in red.

references (Section 5.1.7). The possibility to efficiently compute key-points along a trajectory

(Section 4.4.2.1) together with high-order derivatives at their time occurrence (Section 4.1),

suggests that an optimisation-based approach is a potential solution to this limitation. The

combination of optimal control with the ΣΛmodel is generally a promising research avenue.

For example, in Section 8.4, we have seen that the overlap between lognormals produces a

delay between velocity minima that is similar to the the one predicted by the minimum jerk

model (Flash and Hogan, 1985; Todorov and Jordan, 1998). This suggests that optimising the

time-overlaps between lognormals can result in trajectories that are optimal in a minimum-

square-derivatives sense (Engelbrecht, 2001), and this can potentially lead to an efficient so-

lution to the uniform parameterisation problem that affects MIC similarly to splines (see Sec-

tion 5.4.2 and Lee, 1989).

12.4.2 MIC

The main limitation of the MIC method (Chapter 5) is the inefficiency of the batch solution,

which requires solving a potentially large linear problem with O(n3) computational com-

plexity. While the iterative solution described in Appendix C.2 is much more efficient (Figure

5.27), it does not enable some useful functionalities, such as stochastic sampling and peri-

odic trajectories. The possibility to refine an initially sparse trajectory estimate mitigates the

issue with the batch solution, but the computational complexity of the method still limits the

use of MIC as an interactive curve generation tool in vector-design applications.

One way to improve performance is to formulate the optimisation problem in terms of

B-splines, as proposed by Fujioka and colleagues (Shinoda et al., 2003; Fujioka et al., 2006;

Fujioka and Miyata, 2011). The B-spline formulation still requires the solution of a O(n3)

288 Chapter 12. Conclusion

problem, but it does not require considering full states (with all derivatives) for each time

step and thus results in a smaller optimisation problem and a more efficient solution. As

a preliminary test, I implemented the method of Shinoda et al. (2003), extending it with a

weighted formulation in terms of semi-tied Gaussians (Section 5.2.2). While the method pro-

vides a valid replacement for MIC in the outline based case (Figure 12.2.a), the results appear

less satisfactory for the use case of calligraphic stylisation (Figure 12.2.b and Figure 12.2.c).

However these results are purely qualitative and deserve a more in depth comparison of the

advantages or disadvantages of both methods. In general, certain contributions such as the

semi-tied covariance formulation presented in Chapter 5 are independent of the optimisa-

tion methods used, and exploring different basis function representations of the problem

(including lognormals) is an interesting avenue of future research. The control-based ap-

proach used for MIC is not ideal in terms of efficiency, but it is highly flexible. For example,

the same optimal control problem can be also formulated in the frequency domain (Calinon,

2019), which has interesting implications when modeling oscillatory behaviors in drawing or

scribbling movements.

12.4.3 Graffiti design

One aspect that is not taken into account in this thesis is the emergent character of the graf-

fiti drawing/writing process. With the proposed methods, graffiti letter design is reduced to a

combination of building blocks, which is indeed a procedure that is often followed by novice

graffiti artists when learning how to sketch the stylised outlines a piece (Figure 12.3.a and b).

However, with experience, certain combinations of strokes are assimilated, and the resulting

letter outlines are often sketched as single entity (Figure 12.3.c). This results in a more rapid

sketching procedure, in more organic letterforms, and in a drawing procedure that is akin to

improvisation. Each new stroke is influenced by the previous one, or also by errors occurring

while performing drawing gestures. This results in a feedback mechanism that makes it dif-

ficult to predict what the final drawing outcome will be. At the same time, designing graffiti

with such a procedure requires first having a solid grasp of a set of component elements, and

the primitives developed in this thesis are intended to provide such a basis to be used for

more sophisticated models of the graffiti sketching process to come.

I have demonstrated in Chapter 11 how a stroke-based representation of a glyph, aug-

mented with connectivity information, can be exploited to apply structural stylisations to a

letterform. In Chapter 5, I also demonstrated simple examples where motor plans are con-

catenated to produce smooth ligatures. These are just demonstrative examples of the flexi-

bility of the combined motor plan and stroke representations. Possible extensions to these

simple procedures include: computing connections between strokes, replacing spine cor-

ners with loops or physics-based rigid deformations of a motor plan. The compositional and

form functions proposed by Ferri (2016), which I have translated from Italian in Appendix

12.4. Limitations and future work 289

(a) (b) (c)

Figure 12.3: Sketching graffiti letters by hand. (a) sketching single strokes and then (b) outlining the
union of the strokes. This procedure is usually followed when learning to draw graffiti.
(c) With experience, the strokes are conceptualised and the letter outline is sketched as a
whole.

B, are a useful guide for these future developments. This thesis implements computational

analogues of a subset of these functions, but many more remain to be explored. The reader

is invited to refer to Appendix B for an overview of functions that can be implemented as an

extension to the methods presented in this thesis.

12.4.4 Empirical aesthetics research

The work developed in this thesis has contributed to a series of ongoing experiments that

investigate the aesthetics of graffiti and the relations between the kinematic qualities of a

movement and the aesthetic appreciation of the resulting drawing outcomes. The experi-

ments (Chamberlain et al., 2020, 2019) have been designed and conducted by a team of psy-

chologists at Goldsmiths, University of London and the Katholieke Universiteit in Leuven,

with my contribution being the selection and generation of stimuli.

12.4.4.1 Perception of graffiti compared to text-based and pictorial art

In a first experiment (Chamberlain et al., 2020), we examined low level image statistics (self-

similarity, anisotropy and complexity) and aesthetic ratings of graffiti art (pieces and tags)

compared to other text-based (calligraphy, initiums and ornate lettering) and pictorial (ab-

stract and representational painting) art forms. The experiment was conducted on 169 par-

ticipants with varying degree of expertise in the arts. Participants showed a generally lower

preference for graffiti art, when compared to other art forms. However the results also

showed a preference for graffiti and calligraphy in expert over non-expert viewers, suggesting

a role of expertise in the aesthetic appreciation of these art forms. Participants also preferred

graffiti images with higher self-similarity and complexity, and lower anisotropy. This suggests

that low level image statistics are an interesting metric to consider if integrating the methods

described in this thesis into a procedural generation pipeline.

290 Chapter 12. Conclusion

(a) (b) (c)

time

sp
ee

d

Figure 12.4: Example of minimum jerk and inverted speed profiles together with the corresponding
static stimuli. The speed profiles are different, but the trace is the same. (a) Minimum jerk
(MJ, black) and inverted minimum jerk (IMJ, blue) speed profiles. (b) Brush rendering of
the MJ trajectory resulting in a thinner stroke near curvature extrema. (c) Brush rendering
of the IMJ trajectory, resulting in a thinner stroke near curvature extrema.

12.4.4.2 Movement kinematics and the aesthetic appreciation of tags

In a second experiment (Chamberlain et al., 2019) we shifted our focus to synthetic tag stim-

uli, investigating the role of movement qualities in the aesthetic appreciation of tags. The

experiment was conducted on 61 participants, of which 29 “experts” had at least 3 years of

prior training in the arts. The experiment evaluated the perceived naturalness of biologi-

cally feasible and infeasible motions, and compared the naturalness ratings to aesthetic rat-

ings of the resulting static traces. The biologically feasible motions followed minimum jerk

trajectories, characterised by the stereotypical inverse relation between speed and absolute

curvature. The trajectories were first generated with MIC using the method described in Sec-

tion 5.3.3. We then reconstructed the trajectories using the path-constrained minimum jerk

model (Todorov and Jordan, 1998), given its stronger biological implications with respect to

MIC. The biologically infeasible motions followed an “inverted” reparameterisation of the

same trace (Figure 12.4a), characterised by an opposite and implausible relation between

speed and absolute curvature (Dayan et al., 2007). Both stimulus types were rendered with

the brush model described in Section 4.5, resulting in thicker strokes near curvature extrema

for the minimum jerk trajectories (Figure 12.4b) and the opposite relation for the reparame-

terised trajectories (Figure 12.4c).

In a first block of trials, the participants were asked to aesthetically rate static images,

consisting of traces rendered with either the minimum jerk or inverse parameterisation. In a

second block of trials, the participants were asked to rate the naturalness of the correspond-

ing movements. All participants rated the minimum jerk trajectories as more natural and

more aesthetically pleasing, with a strong correlation between naturalness and aesthetic rat-

ings. Both expert and non expert participants found the movements generated with the min-

imum jerk model more natural than those generated with the inverse parameterisation, fur-

12.4. Limitations and future work 291

ther showing a strong correlation between the perceived naturalness of a movement and the

aesthetic appreciation of the corresponding static stimulus. More surprisingly, only experts

viewers showed a preference for the static stimuli generated with minimum jerk model.

Again, these results demonstrate a role of expertise in the aesthetic evaluation of graf-

fiti. The results also support an embodied aesthetics hypothesis (Freyd, 1983; Freedberg and

Gallese, 2007; Pignocchi, 2010) and further suggest that expert observers take into account

the kinematic feasibility of a movement when aesthetically evaluating the resulting static

trace, also for the case of synthetically generated drawings. In a follow-up series of exper-

iments, we plan to construct stimuli from the digitised movements of a number of expert

graffiti artists. We have already collected data from three artists by recording their writing

movements with a whiteboard-marker digitiser.2 We digitised different instances of tags, as

well as random scribbles and isolated letters of the alphabet. We plan to use these move-

ments as stimuli in the context of a series of EEG studies, in order to investigate possible

neural correlates of the perceived naturalness and aesthetic quality of the digitised move-

ments, as well as their reconstruction with the ΣΛ and minimum jerk models.

12.4.5 Parameter choices and evaluation

Many of the parameter choices used across the thesis are driven by my personal aesthetic

preference and experience as a graffiti writer. In particular, when using MIC, I have often

settled for a relatively high system order of 4 (snap) or 5 (crackle) instead of the more con-

ventional order of 3, which would be consistent with the minimum jerk model. This choice is

based on my observation that these higher orders system result in subtle trajectory qualities

that resemble ones that can be seen in well executed tags. Similarly, a user of the system is

able to tune these parameters to his/her aesthetic preference. However, I argue that an exper-

imental evaluation of the aesthetic appeal of different system orders is not only interesting

in the context of graffiti modeling but also in the broader context of computational motor

control, where the subject of “optimality” is still a matter of debate (Flash and Hogan, 1985;

Edelman and Flash, 1987; Dingwell et al., 2004; Djioua and Plamondon, 2010).

Similarly, the choice of the CSF saliency measure in Chapter 7 has been determined

based on its favourable performance in the applications discussed in Chapter 8 and Chapter

10. At the same time, the results of the large-scale experiment performed by De Winter and

Wagemans (2008b) are publicly available, so in future studies I plan to compute correlations

between the proposed saliency measure with the saliency computed from human prefer-

ences and then compare the results with the other measures studied by the authors of the

study (e.g. turning angle and stick-out).

2The “eBeam smart marker” https://www.luidia.com/smartmarker/

https://www.luidia.com/smartmarker/

292 Chapter 12. Conclusion

12.4.6 Data driven methods

I have argued in Chapter 11 against the utility of controlled user studies to evaluate the aes-

thetic quality of results. The system is intended to give sufficient exploratory freedom to

users, the aesthetic preferences of whom may vary depending on culture or simply personal

taste (Hertzmann, 2010). However flexible, the large number of parameters of the system can

be daunting to control and, often, settings that work well for one font are not guaranteed to

work as well for another font. One interesting avenue of future research is to use a supervised

learning method similar to the one used by Xu et al. (2012) for calligraphy to automatically

evaluate stylisation results based on the feedback of one or more expert graffiti artists. An-

other interesting approach would be to combine a form of dimensionality reduction (Yumer

et al., 2015) together with a genetic algorithm (McCormack and Lomas, 2020) to reduce the

number of parameters exposed to a user and to automatically predict settings given user se-

lected preferences.

A data driven approach is also potentially useful to efficiently solve the previously dis-

cussed parameterisation problem with MIC. Optimal passage times can be computed with an

optimisation method similar to the one proposed by Todorov and Jordan (1998) for the min-

imum jerk model. This optimisation results in curvature extrema that occur at motor plan

vertices for interpolatory trajectories or near these vertices for approximating ones. How-

ever, this kind of optimisation problem cannot currently be solved at interactive rates. One

potential interactive solution consists in computing optimal passage times offline for a num-

ber of motor plan configurations, and then learning a mapping between relative orientations

of motor plan segments to the optimal passage times with a sequence-based model simi-

lar to those discussed in Chapter 9. Conceptually similar approaches have become recently

popular in fluid or smoke simulations (Wiewel et al., 2019; Kim et al., 2019).

Finally, data driven methods are also a promising extension to the junction classification

procedure in Chapter 10. We currently rely on a heuristic method, with parameters deter-

mined empirically based on a quantitative and qualitative evaluation of the results. In future

developments the same choices could be driven with examples labelled by a user or automat-

ically and the junction representation is sufficiently high-level to hypothesise that only a few

examples should be sufficient for this task. As mentioned in Chapter 10, the current segmen-

tation method already produces paths that can be used to train sequence-based generative

models, transforming font outlines into potential training data for methods such as the one

developed by Ha and Eck (2018) or Lake et al. (2013). Investigating the performance of these

methods to generate novel letter structures is also an interesting and promising avenue of

future research.

12.5. Final notes 293

12.5 Final notes
Returning to Hofstadter (1985), it should be noted that the system developed in this thesis

does not attempt to model the creative process involved in graffiti creation, but rather to

provide a “creativity support tool” (Shneiderman, 2009; Resnick et al., 2005), which can en-

able a more expert user to rapidly prototype complex graffiti-like compositions and a more

novice user to rapidly create stylised strings that resemble this art form. This is not to say

that modeling higher level aspects of the graffiti production and conception process is not a

useful future research avenue. The primitives developed in this thesis are meant to provide

an abstraction layer that facilitates graffiti content creation for a human, but also for an AI

system that would be left with a simplified and higher level task of planning and composi-

tion.

This thesis is concerned with the stylistic and visual aspects of graffiti art. However, there

is much more to this art form, which also includes a rich subculture, made of people around

the globe sharing an unusual artistic interest and often adventurous experiences, which cer-

tainly cannot be replaced with a simulation, let alone with the methods developed here. At

the same time, as a graffiti artist, I hope that the tools I have developed can contribute to the

growing adoption of technology in graffiti art, and that results produced using these tools will

eventually find a place as physical graffiti (more or less automatically) made in the (urban)

wild.

Appendix A

List of peer-reviewed publications

The following is a chronological list of publications that have been peer-reviewed, accepted

and published, and for which I am the first author; followed by a reference to the Chapters

where they are most relevant.

1. (Berio and Leymarie, 2015) D. Berio and F. F. Leymarie. “Computational models for

the analysis and synthesis of graffiti tag strokes.” In P. Rosin, editor, Computational

Aesthetics, pages 35–47. Eurographics Association. Proceedings of a workshop part of

the Expressive Symposium, held in Istanbul, Turkey, June 2015. (Chapters 4 & 8).

2. (Berio et al., 2016) D. Berio, S. Calinon, and F. F. Leymarie. “Learning dynamic graf-

fiti strokes with a compliant robot.” In the Proceedings of the IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), pp. 3981–3986. Held in Daejeon,

South Korea, October 2016. (Chapter 4).

3. (Berio et al., 2017b) D. Berio, S. Calinon, and F. Fol Leymarie. “Generating calligraphic

trajectories with model predictive control.” In Proceedings of Graphics Interface, Cana-

dian Human-Computer Communications Society. Held in Edmonton, Canada, May

2017. (Chapter 5).

4. (Berio et al., 2017d) D. Berio, F. Fol Leymarie, and R. Plamondon. “Computer aided

design of handwriting trajectories with the kinematic theory of rapid human move-

ments.” In the Proceedings of the 18th Biennial Conference of the International Grapho-

nomics Society (IGS). Held in Gaeta, Italy, June 2017. Received the GIRPR best paper

award on Pattern Recognition, sponsored by Gruppo Italiano Ricercatori in Pattern

Recognition. (Chapter 4).

5. (Berio et al., 2017c) D. Berio, S. Calinon, and F. F. Leymarie. “Dynamic graffiti stylisation

with stochastic optimal control.” In the ACM Proceedings of the 4th International Con-

296 Appendix A. List of peer-reviewed publications

ference on Movement Computing (MOCO). Held in London, UK, June 2017. (Chapter

5).

6. (Berio et al., 2017a) D. Berio, M. Akten, F. F. Leymarie, M. Grierson, and R. Plamondon.

“Calligraphic stylisation learning with a physiologically plausible model of movement

and recurrent neural networks.” In the ACM Proc. of MOCO. Held in London, UK, June

2017. (Chapter 9).

7. (Berio et al., 2018a) D. Berio, F. F. Leymarie, and R. Plamondon. “Expressive curve edit-

ing with the sigma lognormal model. ” In the Proceedings of the 39th Annual European

Association for Computer Graphics Conference: Short Papers, pp. 33–36. Eurographics.

Held in Delft, the Netherlands, April 2018. (Chapter 4).

8. (Berio et al., 2018b) D. Berio, F. F. Leymarie, and R. Plamondon. “Kinematic reconstruc-

tion of calligraphic traces from shape features.” In the Proceedings of the International

Conference on Pattern Recognition and Artificial Intelligence (ICPRAI), vol. 1, pp. 762–

767. Held in Montreal, Canada, in May 2018. (Chapters 7 & 8).

9. (Berio et al., 2019) D. Berio, P. Asente, J. Echevarria, and F. F. Leymarie. “Sketching and

layering graffiti primitives.” In the Proceedings of the 8th ACM/Eurographics Expres-

sive Symposium on Computational Aesthetics and Sketch Based Interfaces and Model-

ing and Non-Photorealistic Animation and Rendering, pp. 51–59. Held in Genoa, Italy,

May 2019. (Chapter 6).

10. (Berio et al., 2020a) D. Berio, F. F. Leymarie, and S. Calinon. “Interactive generation of

calligraphic trajectories from Gaussian mixtures.” In Mixture Models and Applications,

Unsupervised and Semi-Supervised Learning book series (UNSESUL), Springer, Ch. 2,

pp. 23–38. 2020 (Chapter 5).

11. (Berio et al., 2020b) D. Berio, F. F. Leymarie, and R. Plamondon. “Kinematics recon-

struction of static calligraphic traces from curvilinear shape features.” In The Lognor-

mality Principle and its Applications in e-Security, e-Learning and e-Health, Series in

Machine Perception and Artificial Intelligence. Ch. 11, pp. 237–268. World Scientific.

December 2020. (Chapters 7 & 8).

Appendix B

Ferri’s form and composition functions

The following are translations from Italian, with annotations, of two tables from the book of

(Ferri, 2016) “Teoria del writing, La ricerca dello stile”. Ferri describes a number of “compo-

sitional” (Table B.1) and “form” (Table B.2) operations, that according to him characterise

different graffiti styles (“style” columns, cf. Figure 1.5 in the intro). The operations are not

defined computationally or mathematically, but many of these afford a computational in-

terpretation. A subset of these operations are, at least partially, implemented in this thesis.

These are color coded (red or blue) according to the relevant chapter in the same row. I also

indicate that a subset of the remaining operations can readily be implemented in the near

future, and I color code them as future work.

298 Appendix B. Ferri’s form and composition functions

FC# Style Description Operations Implementation

FC0 stick Outlining a shape or area in order to
create a form Adjacent; Spaced; Over-

lapped/(underlapped); cross-
ing/intersections; loops; knots;
serifs;

Chapter 6, Chapter 11

FC1 bubble Addition/union
Adjacent; Spaced; Overlapped;
crossing/intersections; Fused; Out-
lined; Incorporation;

Chapter 6, Chapter 11

FC2 bubble Subtraction
Subtraction of a over-
lapped/intersecting shape from
another; “Partial” subtraction of
a shape; Complete subtraction
of a shape from another; Inverse
subtraction (XOR).

Future work.

FC3 bubble,block Intuitive/rational repetition
adjacent; spaced; overlapped;
Crossing/intersections; Fused;
Increasing/decreasing; ordered;
random; tilted; “intuitive” or sys-
tematic

Chapter 6.

FC4 block Subdivision of space
adjacent; spaced; overlapped;
crossing/intersections; fused;
increasing/decreasing; ordered;
random; tilted; subdivision of
space;

Chapter 6

FC5 marshmallow Combined application of bubble
functions, to stick or block. Deform; Distort; sym-

bolic/figurative sculpting; ap-
plication to form of morphologi-
cal/natural attributes.

Future work.

FC6 platform Application of block functions, to
stick or bubble, through structural
forms.

Platforms; Connections; Structure;
intertwinement of structures and
schemas.

Future work

FC7 combo
Combined application of bubble,
stick and block functions through
structural schemas.

Combine; progression;
skeme/trace; structure/skeleton;
rhythmic/metric; tangle;

Chapter 11, Chapter 10, Future
work.

FC8 arrow Multiplication between different
forms. Combined application of
stick, bubble, block, marshmallow,
platform and combo functions.

Compositional method:
scheme/diagram, structure, trace;
Movement; Interior, exterior and
outline have the same importance;
Branching; Explosion; Expansion;
Multiplication between different
forms;

Chapter 11, Chapter 5, Future work.

FC9 puzzle Division between different forms.
Combined application of stick,
bubble, block, marshmallow, plat-
form and combo functions.

Deconstruction/decomposition;
Division between forms; External
influences; Patterns; Abstraction;
Informal; Interior, exterior and
outline have the same importance;

Future work.

FC10 machine Equations between forms
Adding architectural or mechani-
cal attributes to forms; Citations,
mixing, influences; Interior, exte-
rior and outline have the same im-
portance;

FC11 wild style Free/improvised combination of
functions, which determine the
individual’s style.

infinite

Table B.1: Compositional functions

299

F# Style Description Operations Implementation methods

F0 stick Force of the "sign" (move-
ment). Determines basic
shapes of Sticks and Bars.

Line; Angles/curves; Parabola;
broken, acute, obtuse; Mixed;
Start and end of shape, extrem-
ities, serifs; Open/closed shape

Chapters 5 and 6

F1 stick Force that is "internal" to the
shape Length/width; Increase area in

one or both directions
Chapter 6

F2 stick Force that is "external" to the
shape Width; Decrease/shrink area

non proportionally.
Chapter 6

F3 stick Folding
Folds the sign, creates over-
laps; loops

Chapter 6

F4 bubble Intuitive study (speculation) of
form. "Soft" force. Fattening; Magnification; In-

flation; Modelling; "moderate"
torsion

Future work.

F5 bubble Shift translation

F6 bubble Intuitive 3d effects
Shadows, thickness Chapter 6

F7 bubble, block Application of geometric study
of shape. Intuitive/rational. Section/division; tilt; rotation;

curvature; schematisation;
projection

Chapter 6, Chapter 11, Future
work.

F8 block "rigid" three-dimensionality
Volume; XYZ Projection; XYZ
fold; Perspective; Relief;

Chapter 6, Future work.

F9 marshmallow Figurative/symbolic modelling
shaping/modelling; distor-
tion; deformation; figura-
tive/organic attributes.

Chapter 6, Future work.

F10 marshmallow Organic reactions, metamor-
phosis cracks; breakages; holes; de-

flations; melting; drips; loss of
outline; bouncing.

Future work.

F11 platform Structural function of ele-
ments arrangement; base (platform);

roof; support; connections;
loops.

Future work.

F12 combo Synergetic combination of
form functions and compo-
sitional functions for stick,
bubble, block, platform and
marshmallow

The form is given by simple
combinations of elements with
semantic attributes (the word
in language).

Future work.

F13 arrow Form multiplication functions Multiply; Motion, dynamics;
Interior, exterior and outline
have the same importance;
simple semantic combination
of elements (language).

Chapter 6.

F14 puzzle Form division functions
Divide; Abstraction; Interior,
exterior and outline have the
same importance. Simple se-
mantic combination of ele-
ments (word, language).

Future work.

F15 machine Form results from complex
combinations of form func-
tions and compositional func-
tions for combo puzzle arrow
and all other styles.

Form emerges from the com-
bination of form functions and
compositional functions; Attri-
bution of semantic and signifi-
cant values to combination of
forms. Equivalent to a concept
expressed with a sentence.

Table B.2: Form functions

Appendix C

Additional details on MIC trajectory

generation

C.1 Displacement-based smoothing weight

Several advanced methods exist to automatically tune the tracking and control weights for

LQT problems, but often the weights are chosen with a trial and error procedure. A well

known method to choose weights is known as Bryson’s rule (Hespanha, 2005), in which the

values along the diagonals of Q t and R t are chosen as

1

emax
2 and

1

umax
2

where emax and umax are respectively the maximum desired state deviation and command

magnitude. Bryson’s rule produces a dimensionless cost function, since the units of the

squared denominators and the quadratic terms in Eqn. 5.5 cancel out.

Another weight tuning method is based on the observation that plotting the magnitude

of the generated commands against the log of the residual in the least squares estimate as

a function of a set of constant values along the diagonal of R t results in an L-shaped curve

(Hansen, 2000; Zeestraten et al., 2016a). The point of maximum curvature in the L-curve is

then considered an optimal choice for the weights in R t .

With the problem at hand, we are interested in allowing a user to rapidly explore the

visual quality of a trajectory across different system orders, and the hand-application of

Bryson’s rule is not practical because it is is necessary to estimate the maximum forcing com-

mand for high order derivatives of position. At the same time, the L-curve method requires

multiple iterations per order to find the optimal value, which is not practical in our use case

for obvious performance reasons.

In order to automatically adjust the weights in R in a manner that is independent from

302 Appendix C. Additional details on MIC trajectory generation

the order of the system, we can use the transfer function of the integrator chain, which for

the continuous system case is simply given by

H(s) = L [y(t)]

L [u(t)]
= Y (s)

U (s)
= 1

sn , (C.1)

where L is the Laplace transform operator.

We then compute the gain of the system at a low frequency, which we empirically choose

by using a time period Ts∆t , resulting in a natural frequency of

ω= 2π

Ts∆t
. (C.2)

In practice this corresponds to the assumption that a trajectory is decomposed into a discrete

sequence of ballistic submovements aimed at consecutive targets, and we are measuring the

gain of an oscillatory motion between two targets, with a period given by the average duration

of a sub-movement.

We then express the weights R is then expressed in terms of maximum displacement

∆max rather than an order dependent command amplitude, with

R =
(∣∣H(ω j)

∣∣
∆max

)2

I = 1

(ωn∆max)2 I , (C.3)

where ω j is the complex frequency and ∆max is the maximum displacement. If we examine

the dimensionality of the terms in the cost function, we see that the dimension of [R t] is [T 2n

L2]

which results in a dimensionless term u>Rt u in 5.5. The Manhanolobis distance in the state

term is dimensionless as well, therefore the whole cost function is dimensionally consistent.

The choice of the period 2π in the numerator of Eqn. C.2 produces consistent tracking

results across different system orders, but it makes a precise assumption on the structure of

a movement. Intuitively, another reasonable choice for the numerator would be π instead of

2π. This would correspond to measuring the gain of one point-to-point ballistic movement,

but this choice did not produce satisfactory results in our experiments.

C.1.1 Derivation with Simple Harmonic Motion

An equivalent result can be derived by considering an idealised oscillatory motion (Simple

Harmonic Motion) between consecutive targets with equation

x̃(t) =∆maxcos(ωt) ,

C.2. Iterative solution 303

where ∆max is the amplitude (maximum displacement) of the motion and ω is the angular

frequency of the oscillation. The absolute value of the nth order derivative of x̃ is given by

∣∣∣∣d n x̃

d t n

∣∣∣∣=
ωn∆maxsin(ωt) if n is odd,

ωn∆maxcos(ωt) if n is even.

and has a maximum amplitude given byωn∆max, which we can use to construct the diagonal

of R t as a function of the user specified displacement ∆max with

R t = 1

(ωn∆max)2 I and ω= 2π

Ts∆t
, (C.4)

where ω is empirically set to the period corresponding to the average sub-movement dura-

tion Ts∆t , and the denominator is squared because the control term u>
t R t u t in Eqn. 5.5 is

quadratic. Again, if we examine the dimensionality of the terms, we see that the dimensions

of [R t] and u>
t u t are respectively [T 2n

L2] and [L2

T 2n], which cancel out and result in a dimension-

less cost function.

C.2 Iterative solution

A more efficient solution to the discrete tracking problem can be derived using dynamic pro-

gramming, with a technique that is often the basis for control problems. However, this has

the disadvantage of not producing an output trajectory distribution or allowing the trivial

generation of periodic motions. We refer the interested reader to the work of Bryson (Bryson,

1999) for the details of the derivations. It follows that the optimal solution is given in the form

of a feedback controller with time-varying weighting matrix K t , and the commands for each

time step t are given by

u t =−
(
B̃

>
P t B̃ +R t

)−1
B̃

>
P Ã︸ ︷︷ ︸

K t

x̃ t , (C.5)

where

P t = Q̃ t−A>
(
P t+1B̃ (B̃

>
P t+1B̃ +R t)

−1
B̃

>
P t+1 −P t+1

)
Ã (C.6)

is a Riccati difference equation, which can be solved backwards in time by setting a terminal

condition P N = Q̃ N . In equations (C.5) and (C.6), we introduce the symbols x̃ t , Q̃ t , Ã and B̃ .

These respectively denote an augmented state vector and tracking weight

x̃ t =
[

x̄>
t ,1

]> and Q̃ t =
Q−1

t +x̄ t x̄>
t x̄ t

x̄>
t 1

−1

, (C.7)

304 Appendix C. Additional details on MIC trajectory generation

and augmented system matrices

Ã =
A 0

0 1

 and B̃ =
B

0

 . (C.8)

This allows the tracking problem to be treated more compactly and efficiently as a regulation

problem, resulting in a formulation that is equivalent to a Linear Quadratic Regulator (LQR).

Appendix D

Additional details for font segmentation

D.1 Association fields
Our association fields are adapted from Ernst et al. (2012). The model predicts the condi-

tional link probability of one oriented element relative to another one. The link probabilityα

is given by the product AφAd of an angular and a radial component. The angular component

parameterises deviations from perfect cocircularity and deviations from zero curvature with

the product of two von Mises distributions, analogs of Gaussian distributions with a circu-

lar support. Given two orientations φi ,φ j and planar positions (xi , yi), (x j , y j) the angular

component simplifies to:

Aφ = C

4
cosh

(
1

σ2
β

cos
(
β/2

)+ 1

σ2
θ

cos
(
θ−β/2

))
, (D.1)

with β = φ j −φ j , θ = tan−1
((

y j − yi
)

/
(
x j −xi

))−φi , and σθ = 0.27 and σβ = 0.47 spread

parameters for cocircularity and curvature respectively.1 We use the values for the spread

parameters that were experimentally found to be optimal by Ernst et al. (2012). The constant

C is a normalization factor derived from the von Mises distribution with:

C =π2I0
(
1/σ2

a

)
I0

(
1/σ2

b

)
, (D.2)

where I0 is the modified-Bessel function of the first kind with order 0. We also divide Aφ

by 0.602, so it falls in the [0,1] range, which facilitates parameter setting in our application-

driven use case.

For the task of grouping closely-spaced oriented elements, Ernst et al. (2012) express the

radial component as an exponential function that decays with distance. Again, we opt for

a formulation that facilitates parameter tuning and express the component with a Gaussian

1This equation corrects a typographic error in the original paper

306 Appendix D. Additional details for font segmentation

decay:

Ad = exp

(
d 2

2σ2
d

)
, (D.3)

with d the distance between the two positions and σd a distance-spread. We set σd to twice

the maximum SAI+ radius when computing good continuation for splits, and to the distance

between the branch tangent origins during Y-junction interpretation.

D.2 Hanzi segmentation examples

(a) Paths and width profiles (b) Areas

Figure D.1: Example segmentations from the make-me-a-hanzi dataset (Kishore, 2018)

D.3. Font segmentation examples 307

D.3 Font segmentation examples

(a) Paths and width profiles (b) Areas

Figure D.2: Font: Moderne Fraktur.

(a) Paths and width profiles (b) Areas

Figure D.3: Font: Bickham Script.

308 Appendix D. Additional details for font segmentation

(a) Paths and width profiles (b) Areas

Figure D.4: Font: Apollo.

(a) Paths and width profiles (b) Areas

Figure D.5: Font: Arial bold.

D.3. Font segmentation examples 309

(a) Paths and width profiles (b) Areas

Figure D.6: Font: Adobe Arabic bold.

(a) Paths and width profiles (b) Areas

Figure D.7: Font: Adobe Hebrew bold.

310 Appendix D. Additional details for font segmentation

(a) Paths and width profiles (b) Areas

Figure D.8: Font: PACL.

(a) Paths and width profiles (b) Areas

Figure D.9: Font: Georgia.

D.3. Font segmentation examples 311

(a) Paths and width profiles (b) Areas

Figure D.10: Font: Kazuraki.

(a) Paths and width profiles (b) Areas

Figure D.11: Font: Adobe Bengali Bold.

Appendix E

Symbols and values

The following is a list of the main symbols (Sections E.1 and E.2), functions (Section E.3),

parameters (Section E.4) and thresholds (Section E.5) used across the thesis. Sections E.4

and E.5 also specify default parameter and threshold value, unless the value is assumed to

depend on a choice made interactively by a user, in which case the corresponding field is left

empty.

E.1 Symbols (general):
Symbol Description

x(t) Point along a trajectory evaluated at time t .

x t Point along a trajectory evaluated at discrete time step t

p i Position of a motor plan vertex.

z(s) Trace or contour z , parameterised by arc length s.

b Bisector.

t Tangent.

κ Curvature.

r radius of curvature |1/κ|.
C (s),S(s) Cosine and sine Fresnel integrals.

N
(
µ,Σ

)
Multivariate normal distribution, with mean µ and covariance Σ

314 Appendix E. Symbols and values

Symbol Description

N
(
µ,σ

)
Univariate normal distribution, with mean µ and standard deviation

σ.

P or Q Motor plan.

P or Q Kinematic realisation of a motor plan (resp. P or Q).

Θ Kinematic parameters.

E.2 Other symbols and objects:
Symbol Description Section

t0i Lognormal activation time. §4.1

µi Lognormal delay. §4.1

σi Lognormal response time. §4.1

Di Lognormal amplitude. §4.1

θi ΣΛ sub-movement orientation. §4.1

δi ΣΛmodel sub-movement curvature parameter. §4.1

∆ti Lognormal time overlap parameter. §4.2.3

Aci Lognormal shape parameter. §4.2.3

Ti Lognormal duration parameter. §4.2.3

s0i , s1i ωEΣΛ sub-movement spiral parameters. §4.2.2

τi Time occurrence (or passage time) of key-point along a trajectory. §4.4.2.1

x̄ t MIC reference trajectory at time step t . §5.1.3

Q t MIC reference weights at time step t . §5.1.3

ut MIC control command at time step t . §5.1.1.1

A,B ,C Discrete-time system matrices §5.1.1.1

ξi Kinematic parameter prediction vector. §9.1.4

z i Point along outline §10.2.1.1

t i Tangent at the edge of a concave contact region. §10.2.1.1

E.3. Functions: 315

Symbol Description Section

bi Bisector at a concavity. §10.2.1.1

SA Symmetry axis. §7.2

SAI Interior symmetry axis. §7.2

SAE Exterior symmetry axis §7.2

SAI+ Interior curvilinear augmented symmetry axis (CASA). §7.3.4

SAE+ Exterior CASA. §7.3.4

SAi Local symmetry axis. §7.3

CC i CSF contact circle. §7.3åCC i CSF contact region (circular arc). §7.3

ẑ i CSF curvature extremum locus. §7.3

z lhs
i (s) Left CSF support segment. §7.3

zr hs
i (s) Right CSF support segment §7.3

NC SF Number of CSFs. §7.3

GH Split and concavity graph. §10.3

GX Crossing graph. §10.4.3.1

Q̄ Stroke area planar map. §10.5.2

E.3 Functions:
Symbol Description Section

Λ(t) Lognormal evaluated at time t §4.1

φi (t) ΣΛmodel curvilinear evolution. §4.1

φsi (t) ωEΣΛmodel curvilinear evolution. §4.2.2

φb (x) Brush “hat” function. §4.5

hi (t) Gaussian activation function. §5.1.3

β(b, f) Saliency of a branch b extending from fork f §10.2.1.5

βc (b, f) Saliency of a branch with respect to concavity c §10.2.1.5

w(c) Saliency of a CSF c §7.3.3

ω(η) Saliency of a split η §10.3.3

316 Appendix E. Symbols and values

Symbol Description Section

d(c, v) Influence of a concavity c on vertex v §10.2.1.1

π(b, f) Protruding direction of branch b from fork f §10.2.1.4

ϕ(ci ,c j) Flow direction for two concavities §10.2.2

α(ci ,c j) Good-continuation value between two concavities §10.2.2

α(ηi ,η j) Good-continuation value between two splits §10.4.3

E.4 Parameters:
Symbol Description Value Section

kδ ΣΛ curvature exaggeration. §4.4.2.2

k∆t ΣΛ time overlap exaggeration. §4.4.2.2

σh MIC time interval parameter. §5.1.3

∆max MIC maximum displacement parameter. §5.1.4

σα Fold amount π/4 §6.1

λp Virtual target adjustment weight. 0.5 §4.4.2.1 and §8.2.3

λ∆ ΣΛ time-overlap adjustment weight. 0.1 §8.2.3

λδ ΣΛ curvature adjustment weight. 0.1 §8.2.3

∆s Trace/contour sampling distance. 1 §7.2.1

hext Reference bounding box height. 150 §7.2.1

kc Concavity influence spread 0.5 §10.2.1.1

λs Branch saliency stick-out steepness 0.5 §10.2.1.5

λη Split saliency length weight 2 §10.3.3

λr Proximity radius multiple 3 §10.3.1.1

E.5 Thresholds and Tolerances:
Symbol Description Value Section

smin Chord residual threshold. 0.5 §7.2.1

- Minimum CSF saliency w(c) (M+,m−). 1×10−3 §7.3.3

- Minimum CSF saliency w(c) (M−,m+). 1×10−6 §7.4

- Transition segment subdivision threshold. (4π)/5 §7.5.1.1

- Degenerate inflection threshold. 0.2 §8.1.1

E.5. Thresholds and Tolerances: 317

Symbol Description Value Section

- Branch saliency threshold β(b, f) 0.5 §10.2.1.5

- Split good-continuation threshold 0.15 §10.4.3

- Split pairing max angle 45◦ §10.4.3

τM Morphological junction threshold 0.2 §10.4.4.2

γT T-junction detection threshold 0.2 §10.4.4.4

γB Blunt-tip detection threshold 1 §10.4.4.4

- Flexure minimum influence 0.77 §10.4.4.4

Υl Relative root length threshold 3 §10.4.4.5

Υw Width disparity threshold 1.3 §10.4.4.5

− Degree of overlap δC threshold 0.98 §7.3.2

εθ Local convexity angle tolerance 15◦ §10.3.1.2

Bibliography

E. Abbena, S. Salamon, and A. Gray. Modern differential geometry of curves and surfaces with Mathe-

matica. CRC press, 2017.

W. Abend, E. Bizzi, and P. Morasso. Human arm trajectory formation. Brain: A journal of neurology, 105

(Pt 2):331–348, 1982.

Adobe. Adobe animate: User guide, 2019a. URL https://helpx.adobe.com/animate/

user-guide.html.

Adobe. Illustrator: User guide, 2019b. URL https://helpx.adobe.com/illustrator/

user-guide.html.

L. Albertazzi. Styled morphogeometry. Axiomathes, pages 1–24, 2019.

L. Albertazzi, L. Canal, R. Micciolo, and M. Vescovi. Calligraphy and Klee’s abstract painting: A study on

categorical ambiguity. Art & Perception, 3(3):239—263, 2015.

Z. AlMeraj, B. Wyvill, T. Isenberg, A. A. Gooch, and R. Guy. Automatically mimicking unique hand-drawn

pencil lines. Computers & Graphics, 33(4):496–508, 2009.

N. Amenta and M. Bern. Surface reconstruction by Voronoi filtering. Discrete & Computational Geom-

etry, 22(4):481–504, 1999.

X. Ao, Q. Fu, Z. Wu, X. Wang, M. Zhou, Q. Chen, and H. S. Seah. An intersection algorithm for disk

B-spline curves. Computers & Graphics, 70:99–107, 2018.

P. Aparajeya and F. F. Leymarie. Point-based medialness for 2D shape description and identification.

Multimedia Tools and Applications, 75:1667–1699, February 2016.

A. Appel. The notion of quantitative invisibility and the machine rendering of solids. In Proceedings of

the 1967 22nd National Conference, ACM ’67, pages 387–393. Association for Computing Machinery,

1967.

E. Arias-Castro, G. Lerman, and T. Zhang. Spectral clustering based on local PCA. Journal of Machine

Learning Research, 18:1–57, 2017.

https://helpx.adobe.com/animate/user-guide.html
https://helpx.adobe.com/animate/user-guide.html
https://helpx.adobe.com/illustrator/user-guide.html
https://helpx.adobe.com/illustrator/user-guide.html

320 BIBLIOGRAPHY

R. Arnheim. Art and visual perception: A psychology of the creative eye. Univ of California Press, 1954.

A. Arte. Forms of Rockin’: Graffiti Letters and Popular Culture. Dokument Press, 2015.

H. Asada and M. Brady. The curvature primal sketch. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, PAMI-8(1):2–14, January 1986.

P. Asente, M. Schuster, and T. Pettit. Dynamic planar map illustration. In ACM Transactions on Graphics

(TOG), volume 26, page 30. ACM, 2007.

P. J. Asente. Folding avoidance in skeletal strokes. In Proceedings of the Seventh Sketch-Based Interfaces

and Modeling Symposium, pages 33–40. Eurographics Association, 2010.

F. Attneave. Some informational aspects of visual perception. Psychological review, 61(3):183, 1954.

J. August, K. Siddiqi, and S. W. Zucker. Contour fragment grouping and shared, simple occluders. Com-

puter Vision and Image Understanding, 76(2):146–162, 1999. ISSN 10773142.

V. Ayzenberg and S. F. Lourenco. Skeletal descriptions of shape provide unique perceptual information

for object recognition. Scientific reports, 9(1):1–13, 2019.

S. Azadi, M. Fisher, V. G. Kim, Z. Wang, E. Shechtman, and T. Darrell. Multi-content GAN for few-shot

font style transfer. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

pages 7564–7573, 2018.

X. Bai, L. J. Latecki, and W.-Y. Liu. Skeleton pruning by contour partitioning with discrete curve evolu-

tion. IEEE transactions on pattern analysis and machine intelligence, 29(3), 2007.

E. Balashova, A. H. Bermano, V. G. Kim, S. DiVerdi, A. Hertzmann, and T. Funkhouser. Learning a stroke-

based representation for fonts. Computer Graphics Forum, 38(1):429–442, 2019.

I. Baran, J. Lehtinen, and J. Popović. Sketching clothoid splines using shortest paths. In Computer

Graphics Forum, volume 29, pages 655–664. Wiley Online Library, 2010.

C. Barber, D. Dobkin, and H. Huhdanpaa. The QuickHull algorithm for convex hulls. ACM Transactions

on Mathematical Software, 22(4):469–483, 1996. http://www.qhull.org.

B. Barsky and T. DeRose. Geometric continuity of parametric curves: Three equivalent characteriza-

tions. IEEE Computer Graphics and Applications, 9(6):60–69, Nov 1989.

P. Baudelaire and M. Gangnet. Planar maps: An interaction paradigm for graphic design. In ACM SIGCHI

Bulletin, volume 20, pages 313–318. ACM, 1989.

S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D. S. Seljebotn, and K. Smith. Cython: The best of both

worlds. Computing in Science & Engineering, 13(2):31–39, 2011.

A. Belyaev and S. Yoshizawa. On evolute cusps and skeleton bifurcations. In International Conference

on Shape Modeling and Applications, pages 134–140. IEEE, 2001.

BIBLIOGRAPHY 321

J. Bergstra and Y. Bengio. Random Search for Hyper-Parameter Optimization. Journal of Machine Learn-

ing Research, 13:281–305, 2012.

D. Berio and F. F. Leymarie. Computational models for the analysis and synthesis of graffiti tag strokes.

In P. Rosin, editor, Computational Aesthetics, pages 35–47. Eurographics Association, 2015.

D. Berio, S. Calinon, and F. F. Leymarie. Learning dynamic graffiti strokes with a compliant robot. In

Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ International Conference on, pages 3981–3986.

IEEE, 2016.

D. Berio, M. Akten, F. Fol Leymarie, M. Grierson, and R. Plamondon. Calligraphic stylisation learning

with a physiologically plausible model of movement and recurrent neural networks. In Proc. of 4th

Int’l Conf. on Movement Computing (MOCO), London, UK, 2017a.

D. Berio, S. Calinon, and F. Fol Leymarie. Generating calligraphic trajectories with model predictive

control. In Proceedings of Graphics Interface, Edmonton, Canada, May 2017b. Canadian Human-

Computer Communications Society.

D. Berio, S. Calinon, and F. F. Leymarie. Dynamic graffiti stylisation with stochastic optimal control. In

Proceedings of the 4th International Conference on Movement Computing. Association for Computing

Machinery, 2017c. Article no. 18.

D. Berio, F. Fol Leymarie, and R. Plamondon. Computer aided design of handwriting trajectories with

the kinematic theory of rapid human movements. In 18th Biennial Conference of the International

Graphonomics Society, 2017d.

D. Berio, F. F. Leymarie, and R. Plamondon. Expressive curve editing with the sigma lognormal model.

In Proceedings of the 39th Annual European Association for Computer Graphics Conference: Short

Papers, pages 33–36. Eurographics Association, 2018a.

D. Berio, F. F. Leymarie, and R. Plamondon. Kinematic reconstruction of calligraphic traces from shape

features. In Proceedings of the International Conference on Pattern Recognition and Artificial Intelli-

gence, volume 1, pages 762–767, 2018b.

D. Berio, P. Asente, J. Echevarria, and F. Fol Leymarie. Sketching and layering graffiti primitives. In 8th

ACM/Eurographics Expressive Symposium on Computational Aesthetics and Sketch Based Interfaces

and Modeling and Non-Photorealistic Animation and Rendering, pages 51–59, 2019.

D. Berio, F. Fol Leymarie, and S. Calinon. Interactive generation of calligraphic trajectories from

Gaussian mixtures. In N. Bouguila and W. Fan, editors, Mixture Models and Applications, Un-

supervised and Semi-Supervised Learning Series, chapter 2, pages 23–38. Springer, 2020a. doi:

10.1007/978-3-030-23876-6_2.

D. Berio, F. F. Leymarie, and R. Plamondon. Kinematics reconstruction of static calligraphic traces

from curvilinear shape features. In The Lognormality Principle and its Applications in e-Security,

e-Learning and e-Health, chapter 11, pages 237–268. World Scientific, Nov. 2020b.

322 BIBLIOGRAPHY

N. A. Bernstein. The co-ordination and regulation of movements. Pergamon Press Ltd., 1967.

E. Bertolazzi and M. Frego. Fast and accurate G1 fitting of clothoid curves. arXiv preprint

arXiv:1305.6644, 2013.

H. Bezine, A. M. Alimi, and N. Sherkat. Generation and analysis of handwriting script with the beta-

elliptic model. Proceedings - International Workshop on Frontiers in Handwriting Recognition,

IWFHR, 8(2):515–520, 2004.

I. Biederman. Recognition-by-components: A theory of human image understanding. Psychological

Review, 94(2):115—147, Apr 1987.

T. C. Biedl, C. Grimm, L. Palios, J. R. Shewchuk, and S. Verdonschot. Realizing farthest-point Voronoi di-

agrams. In Proceedings of the 28th Canadian Conference on Computational Geometry (CCCG), pages

48–56, 2016.

C. M. Bishop. Mixture density networks. Technical report, Aston University, 1994.

E. Bizzi and A. Polit. Processes controlling visually evoked movements. Neuropsychologia, 17(2):203–

213, 1979.

E. Bizzi, F. A. Mussa-Ivaldi, and S. Giszter. Computations underlying the execution of movement: A

biological perspective. Science, 253(5017):287–291, 1991.

E. Bizzi, N. Hogan, F. A. Mussa-Ivaldi, and S. Giszter. Does the nervous system use equilibrium-point

control to guide single and multiple joint movements? Behavioral and brain sciences, 15(04):603–

613, 1992.

A. Blanchard. L’hypothèse de l’unité de Ductus en paléographie papyrologique. Scrittura e civiltà, (23):

5–27, 1999.

H. Blum. An associative machine for dealing with the visual field and some of its biological implications.

In Biological prototypes and synthetic systems, pages 244–260. Springer, 1962.

H. Blum. A Transformation for Extracting New Descriptors of Shape. In W. Wathen-Dunn, editor, Models

for the Perception of Speech and Visual Form, pages 362–380. MIT Press, Cambridge, 1967. Proceed-

ings of a symposium held in 1964.

H. Blum. Biological shape and visual science (part I). Journal of Theoretical Biology, 38(2):205–287,

1973.

H. Blum and R. N. Nagel. Shape description using weighted symmetric axis features, 1978. ISSN

00313203.

M. Boden. The creative mind: Myths and mechanisms. Routledge, 2003.

M. Brady and H. Asada. Smoothed local symmetries and their implementation. The International

Journal of Robotics Research, 3(3):36–61, 1984.

BIBLIOGRAPHY 323

J.-J. Brault and R. Plamondon. Segmenting handwritten signatures at their perceptually important

points. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(9):953–957, September

1993a.

J.-J. Brault and R. Plamondon. A complexity measure of handwritten curves: Modeling of dynamic

signature forgery. IEEE Transactions on Systems, Man, and Cybernetics, 23(2):400–413, March/April

1993b.

S. E. Brennan. Caricature generator: The dynamic exaggeration of faces by computer. Leonardo, 18(3):

170–178, 1985.

G. S. Briem, K. Ackoff, A. Blackman, T. Botts, G. S. Briem, E. Clayton, R. Cusick, S. Day, M. Drogin,

J. Evans, et al. Special issue on calligraphy. Visible Language, 17(1), 1983.

J. L. Brooks. Traditional and new principles of perceptual grouping. In J. Wagemans, editor, The Oxford

Handbook of Perceptual Organization, pages 57–87. Oxford University Press, 2015.

A. E. Bryson. Dynamic optimization. Addison Wesley Longman Menlo Park, 1999.

A. Bucksch and R. Lindenbergh. CAMPINO — a skeletonization method for point cloud processing.

ISPRS journal of photogrammetry and remote sensing, 63(1):115–127, 2008.

D. Bullock, S. Grossberg, and C. Mannes. A neural network model for cursive script production. Biolog-

ical Cybernetics, 70(1):15–28, 1993.

R. W. Burkhardt. Lamarck, evolution, and the inheritance of acquired characters. Genetics, 194(4):793–

805, 2013.

S. Calinon. A tutorial on task-parameterized movement learning and retrieval. Intelligent Service

Robotics, 9(1):1–29, 2016a.

S. Calinon. Stochastic learning and control in multiple coordinate systems. In Intl Workshop on Human-

Friendly Robotics, number EPFL-CONF-223744, 2016b.

S. Calinon. Mixture models for the analysis, edition, and synthesis of continuous time series. In

N. Bouguila and W. Fan, editors, Mixture Models and Applications, pages 39–57. Springer, Cham,

2019.

S. Calinon and D. Lee. Learning control. In P. Vadakkepat and A. Goswami, editors, Humanoid Robotics:

a Reference, pages 1261–1312. Springer, 2019.

N. D. Campbell and J. Kautz. Learning a manifold of fonts. ACM Transactions on Graphics (TOG), 33(4),

2014. doi: 10.1145/2601097.2601212. Article no. 91.

R. Chamberlain, K. Chana, G. Orgs, D. Berio, and F. F. Leymarie. The naturalness of artistic mark-making

predicts aesthetic value. In Visual Science of Art Conference, Leuven, Belgium, 2019.

324 BIBLIOGRAPHY

R. Chamberlain, C. Mullin, D. Berio, F. F. Leymarie, and J. Wagemans. Aesthetics of graffiti: Comparison

to text-based and pictorial artforms. Empirical Studies of the Arts, 2020.

F. Chazal and A. Lieutier. The “λ-medial axis”. Graphical Models, 67(4):304–331, 2005.

B. Chazelle and H. Edelsbrunner. An improved algorithm for constructing kth-order Voronoi diagrams.

IEEE Transactions on Computers, C-36(11):1349–1354, 1987.

H.-I. Chen, T.-J. Lin, X.-F. Jian, I. Shen, B.-Y. Chen, et al. Data-driven handwriting synthesis in a con-

joined manner. Computer Graphics Forum, 34(7):235–244, 2015.

X. Chen, Z. Lian, Y. Tang, and J. Xiao. An automatic stroke extraction method using manifold learning.

In Proceedings of the European Association for Computer Graphics: Short Papers, EG ’17, pages 65–68.

Eurographics Association, 2017.

H. Choi, S.-J. Cho, and J. H. Kim. Generation of handwritten characters with Bayesian network based

on-line handwriting recognizers. In null, page 995. IEEE, 2003.

H. Choi, S. J. Cho, and J. H. Kim. Writer dependent online handwriting generation with Bayesian net-

work. In Frontiers in Handwriting Recognition, 2004. IWFHR-9 2004. Ninth International Workshop

on, pages 130–135. IEEE, 2004.

S. Collins, A. Ruina, R. Tedrake, and M. Wisse. Efficient bipedal robots based on passive-dynamic walk-

ers. Science, 307(5712):1082–1085, 2005.

J. L. Coolidge. The unsatisfactory story of curvature. The American Mathematical Monthly, 59(6):375–

379, 1952.

M. Cooper and H. Chalfant. Subway Art. Holt, Rinehart and Winston, 1984.

C. H. Cox, P. Coueignoux, B. Blesser, and M. Eden. Skeletons: A link between theoretical and physical

letter descriptions. Pattern Recognition, 15(1):11–22, 1982.

R. P. C. D. A. Craveiro. The influence of graffiti writing in contemporary typography. SAUC — Street Art

and Urban Creativity Scientific Journal, 3(2):65–83, 2017.

L. Crnkovic-Friis and L. Crnkovic-Friis. Generative choreography using deep learning. In F. Pachet,

A. Cardoso, V. Corruble, and F. Ghedini, editors, Proceedings of the Seventh International Conference

on Computational Creativity (ICCC), pages 271–277, 2016.

G. R. Cross and A. K. Jain. Markov random field texture models. Pattern Analysis and Machine Intelli-

gence, IEEE Transactions on, (1):25–39, 1983.

C. Curtis. Graffiti archeology. http://grafarc.org, 2002.

C. J. Curtis, S. E. Anderson, J. E. Seims, K. W. Fleischer, and D. H. Salesin. Computer-generated water-

color. In Proceedings of the 24th annual conference on Computer graphics and interactive techniques,

pages 421–430, 1997.

BIBLIOGRAPHY 325

B. Dalstein, R. Ronfard, and M. Van de Panne. Vector graphics complexes. ACM Transactions on Graph-

ics (TOG), 33(4):133, 2014.

A. d’Avella, P. Saltiel, and E. Bizzi. Combinations of muscle synergies in the construction of a natural

motor behavior. Nature neuroscience, 6(3):300–308, 2003.

E. Dayan, A. Casile, N. Levit-Binnun, M. A. Giese, T. Hendler, and T. Flash. Neural representations of

kinematic laws of motion: Evidence for action-perception coupling. Proceedings of the National

Academy of Sciences, 104(51):20582–20587, 2007.

M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computational Geometry: Algorithms and

Applications. Springer, 3rd edition, 2008.

C. de Boor. A practical guide to splines. Applied Mathematical Sciences, 1978. doi: 10.1007/

978-1-4612-6333-3.

L. H. de Figueiredo. Adaptive sampling of parametric curves. In A. W. Paeth, editor, Graphics Gems V,

chapter IV.4, pages 173–178. Academic Press, 1995.

H. De Preester. Moving Imagination: Explorations of gesture and inner movement, volume 89. John

Benjamins Publishing, 2013.

C. De Stefano, C. D’Elia, M. Garruto, A. Marcelli, and A. S. Di Freca. A wavelet based curve decomposi-

tion method for on-line handwriting. Advances in Graphonomics: Proceedings of IGS, 2005.

J. De Winter and J. Wagemans. Contour-based object identification and segmentation: Stimuli, norms

and data, and software tools. Behavior Research Methods, Instruments, & Computers, 36(4):604–624,

2004.

J. De Winter and J. Wagemans. Segmentation of object outlines into parts: A large-scale integrative

study. Cognition, 99(3):275–325, 2006.

J. De Winter and J. Wagemans. The awakening of Attneave’s sleeping cat: Identification of everyday

objects on the basis of straight-line versions of outlines. Perception, 37(2):245–270, 2008a.

J. De Winter and J. Wagemans. Perceptual saliency of points along the contour of everyday objects: A

large-scale study. Perception and Psychophysics, 70(1):50–64, 2008b.

R. A. DeCarlo. Linear systems: A state variable approach with numerical implementation. Prentice-Hall,

Inc., 1989.

D. Del Vecchio, R. M. Murray, and P. Perona. Decomposition of human motion into dynamics-based

primitives with application to drawing tasks. Automatica, 39(12):2085–2098, 2003.

J. Denier and J. P. Thuring. The guiding of human writing movements. Biological Cybernetics, 2(4):

145–148, 1965.

326 BIBLIOGRAPHY

O. Deussen, T. Lindemeier, S. Pirk, and M. Tautzenberger. Feedback-guided stroke placement for a

painting machine. In 8th Annual Symposium on Computational Aesthetics in Graphics, Visualization,

and Imaging, pages 25–33, 2012.

S. Deutsch and G. Medioni. Learning the geometric structure of manifolds with singularities using the

tensor voting graph. Journal of Mathematical Imaging and Vision, 57(3):402–422, 2017.

M. M. Deza and E. Deza. Encyclopedia of Distances. Springer, 2013. Updated and revised second edition.

M. Diaz-Cabrera, A. Fischer, M. A. Ferrer, and R. Plamondon. Dynamic signature verification system

based on one real signature. IEEE Transactions on Cybernetics, 48(1):228–239, 2018.

P. Dierckx. An algorithm for smoothing, differentiation and integration of experimental data using

spline functions. Journal of Computational and Applied Mathematics, 1(3):165–184, 1975.

F. Dietrich. Visual intelligence: The first decade of computer art (1965-1975). Leonardo, 19(2):159–169,

1986.

A. R. Dill, M. D. Levine, and P. B. Noble. Multiple resolution skeletons. IEEE Transactions on Pattern

Analysis and Machine Intelligence, PAMI-9(4):495–504, July 1987.

J. B. Dingwell, C. D. Mah, and F. A. Mussa-Ivaldi. Experimentally confirmed mathematical model for

human control of a non-rigid object. Journal of Neurophysiology, 91(3):1158–1170, 2004.

S. DiVerdi. A brush stroke synthesis toolbox. In Image and video-based artistic stylisation, pages 23–44.

Springer, 2013.

M. Djioua and R. Plamondon. An interactive system for the automatic generation of huge handwrit-

ing databases from a few specimens. In Pattern Recognition, 2008. ICPR 2008. 19th International

Conference on, pages 1–4. IEEE, 2008a.

M. Djioua and R. Plamondon. A new methodology to improve myoelectric signal processing using

handwriting. In International Conference on Frontiers in Handwriting Recognition, Montreal, pages

112–117, 2008b.

M. Djioua and R. Plamondon. Studying the variability of handwriting patterns using the kinematic

theory. Human movement science, 28(5):588–601, 2009.

M. Djioua and R. Plamondon. The limit profile of a rapid movement velocity. Human Movement Science,

29(1):48 – 61, 2010.

E. H. Dooijes. Analysis of handwriting movements. Acta Psychologica, 54(1):99–114, 1983.

B. Dresp-Langley. 2D geometry predicts perceived visual curvature in context-free viewing. Computa-

tional Intelligence and Neuroscience, 2015.

B. Durix, G. Morin, S. Chambon, J.-L. Mari, and K. Leonard. One-step compact skeletonization. In

Eurographics (Short Papers), pages 21–24, 2019.

BIBLIOGRAPHY 327

T. Dwyer, N. Hurst, and D. Merrick. A fast and simple heuristic for metro map path simplification. In

International Symposium on Visual Computing, pages 22–30. Springer, 2008.

S. Edelman and T. Flash. A model of handwriting. Biological cybernetics, 57(1-2):25–36, 1987.

M. Egerstedt and C. Martin. Control Theoretic Splines: Optimal Control, Statistics, and Path Planning.

Princeton University Press, 2009.

M. B. Egerstedt, C. F. Martin, et al. A note on the connection between Bezier curves and linear optimal

control. IEEE transactions on automatic control, 49(10):1728–1731, 2004.

J. H. Elder. Bridging the dimensional gap: Perceptual organization of contour into two-dimensional

shape. In J. Wagemans, editor, The Oxford Handbook of Perceptual Organization, pages 207–235.

Oxford University Press, 2015.

S. E. Engelbrecht. Minimum principles in motor control. Journal of Mathematical Psychology, 45(3):

497–542, 2001.

U. A. Ernst, S. Mandon, N. Schinkel-Bielefeld, S. D. Neitzel, A. K. Kreiter, and K. R. Pawelzik. Optimality

of human contour integration. PLOS Computational Biology, 8(5):1–17, 2012.

G. Farin. The Bernstein form of a Bézier curve. In G. Farin, editor, Curves and Surfaces for CAGD (Fifth

Edition), The Morgan Kaufmann Series in Computer Graphics, pages 57 – 79. Morgan Kaufmann,

fifth edition edition, 2002.

G. Farin, G. Rein, N. Sapidis, and A. Worsey. Fairing cubic B-spline curves. Computer Aided Geometric

Design, 4(1–2):91—103, Jul 1987.

J.-D. Favreau, F. Lafarge, and A. Bousseau. Fidelity vs. simplicity: A global approach to line drawing

vectorization. ACM Transactions on Graphics (TOG), 35(4), 2016. Article no. 120.

A. Feldman. Functional tuning of the nervous system with control of movement of maintenance of a

steady posture of movement or maintenance of a steady posture. II. Controllable parameters of the

muscles. Biofizika, 11:498–508, 1966.

J. Feldman and M. Singh. Information along contours and object boundaries. Psychological Review,

112(1):243–252, 2005. doi: 10.1037/0033-295X.112.1.243.

J. Feldman and M. Singh. Bayesian estimation of the shape skeleton. Proceedings of the National

Academy of Sciences, 103(47):18014–18019, 2006.

M. Ferrer, M. Diaz-Cabrera, A. Morales, et al. Static signature synthesis: A neuromotor inspired ap-

proach for biometrics. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 37(3):667–

680, 2015.

M. A. Ferrer, M. Diaz-Cabrera, and A. Morales. Static signature synthesis: A neuromotor inspired ap-

proach for biometrics. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(3):667–

680, 2015.

328 BIBLIOGRAPHY

M. A. Ferrer, M. Diaz, C. Carmona-Duarte, and R. Plamondon. iDeLog: Iterative dual spatial and kine-

matic extraction of sigma-lognormal parameters. IEEE transactions on pattern analysis and machine

intelligence, 42(1):114–125, 2018.

A. Ferri. Teoria del writing, La ricerca dello stile. Professional Dreamers, 2016.

D. J. Field, A. Hayes, and R. F. Hess. Contour integration by the human visual system: Evidence for a

local “association field”. Vision Research, 33(2):173–193, Jan 1993. ISSN 0042-6989.

C. Firestone and B. J. Scholl. “please tap the shape, anywhere you like” shape skeletons in human vision

revealed by an exceedingly simple measure. Psychological science, 25(2):377–386, 2014.

A. Fischer, R. Plamondon, C. O’Reilly, and Y. Savaria. Neuromuscular representation and synthetic

generation of handwritten whiteboard notes. In Frontiers in Handwriting Recognition (ICFHR), 2014

14th International Conference on, pages 222–227. IEEE, 2014.

P. M. Fitts. The information capacity of the human motor system in controlling the amplitude of move-

ment. Journal of experimental psychology, 47(6):381, 1954.

P. M. Fitts and M. I. Posner. Human performance. Brooks/Cole, 1967.

T. Flash. Organizing principles underlying the formation of arm trajectories. PhD thesis, Massachusetts

Institute of Technology, 1983.

T. Flash and A. A. Handzel. Affine differential geometry analysis of human arm movements. Biological

cybernetics, 96(6):577–601, 2007.

T. Flash and E. Henis. Arm trajectory modifications during reaching towards visual targets. Journal of

cognitive Neuroscience, 3(3):220–230, 1991.

T. Flash and B. Hochner. Motor primitives in vertebrates and invertebrates. Current opinion in neuro-

biology, 15(6):660–6, 2005.

T. Flash and N. Hogan. The coordination of arm movements. Journal of Neuroscience, 5(7):1688–1703,

1985.

M. S. Floater and T. Surazhsky. Parameterization for curve interpolation. In Studies in Computational

Mathematics, volume 12, pages 39–54. Elsevier, 2006.

J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes. Computer Graphics (2nd Ed. in C): Principles and

Practice. Addison-Wesley Longman Publishing Co., Inc., USA, 1995. ISBN 0201848406.

T. A. Foley and G. M. Nielson. Knot selection for parametric spline interpolation. In Mathematical

methods in computer aided geometric design, pages 261–CP4. Elsevier, 1989.

W. C. Fong. Why Chinese painting is history. The Art Bulletin, 85(2):258–280, 2003.

BIBLIOGRAPHY 329

K. Franke and S. Rose. Ink-deposition model: The relation of writing and ink deposition processes. In

Frontiers in Handwriting Recognition, 2004. IWFHR-9 2004. Ninth International Workshop on, pages

173–178. IEEE, 2004.

D. Freedberg and V. Gallese. Motion, emotion and empathy in esthetic experience. Trends in cognitive

sciences, 11(5):197–203, 2007.

F. N. Freeman. Experimental analysis of the writing movement. Psychological Monographs: General and

Applied, 17(4):1–57, 1914.

W. T. Freeman, J. B. Tenenbaum, and E. C. Pasztor. Learning style translation for the lines of a drawing.

ACM Transactions on Graphics (TOG), 22(1):33–46, 2003.

J. J. Freyd. Representing the dynamics of a static form. Memory & cognition, 11(4):342–346, 1983. ISSN

0090-502X.

J. J. Freyd. Dynamic mental representations. Psychological review, 94(4):427–438, 1987. doi: 10.1037/

0033-295X.94.4.427.

V. Froyen, J. Feldman, and M. Singh. Bayesian hierarchical grouping: Perceptual grouping as mixture

estimation. Psychological Review, 122(4):575–597, 2015. doi: 10.1037/a0039540.

H. Fu, S. Zhou, L. Liu, and N. J. Mitra. Animated construction of line drawings. In ACM Transactions on

Graphics (TOG), volume 30, pages 1–10, 2011. doi: 10.1145/2070781.2024167.

H. Fujioka and S. Miyata. Reshaping and reconstructing handwritten character typeface using dynamic

font model. In 2011 Third International Conference on Intelligent Networking and Collaborative Sys-

tems, pages 563–568, Nov 2011.

H. Fujioka, H. Kano, H. Nakata, and H. Shinoda. Constructing and reconstructing characters, words,

and sentences by synthesizing writing motions. Systems, Man and Cybernetics, Part A: Systems and

Humans, IEEE Transactions on, 36(4):661–670, 2006.

J. Galbally, R. Plamondon, J. Fierrez, and J. Ortega-Garcia. Synthetic on-line signature generation. Part

I: Methodology and algorithms. Pattern Recognition, 45(7):2610–2621, 2012.

V. Gallese, L. Fadiga, L. Fogassi, and G. Rizzolatti. Action recognition in the premotor cortex. Brain, 119

(2):593–610, 1996.

A. Galton and R. C. Meathrel. Qualitative outline theory. In IJCAI, pages 1061–1066, 1999.

F. Gao, G. Wei, S. Xin, S. Gao, and Y. Zhou. 2D skeleton extraction based on heat equation. Computers &

Graphics, 74:99–108, 2018.

Y. Gao, Y. Guo, Z. Lian, Y. Tang, and J. Xiao. Artistic glyph image synthesis via one-stage few-shot learn-

ing. ACM Transactions on Graphics, 38(6):1–12, Nov 2019.

330 BIBLIOGRAPHY

P. Garrigan and P. J. Kellman. The role of constant curvature in 2-D contour shape representations.

Perception, 40(11):1290–1308, 2011.

L. A. Gatys, A. S. Ecker, and M. Bethge. A neural algorithm of artistic style. arXiv preprint

arXiv:1508.06576, 2015.

F. Gers, J. Schmidhuber, and F. Cummins. Learning to forget: Continual prediction with LSTM. Neural

Computation, 12(10):2451–2471, 2000.

C. Ghez, M. Favilla, M. Ghilardi, J. Gordon, R. Bermejo, and S. Pullman. Discrete and continuous plan-

ning of hand movements and isometric force trajectories. Experimental Brain Research, 115(2):217–

233, 1997.

P. K. Ghosh and C. A. Bigelow. A formal approach to lettershape description for type design. Technical

report, Department of Computer Science, Stanford University, 1983.

É. Ghys, S. Tabachnikov, and V. Timorin. Osculating curves: Around the Tait-Kneser theorem. The

Mathematical Intelligencer, 35(1):61–66, 2013.

P. Giblin. Symmetry sets and medial axes in two and three dimensions. In The Mathematics of Surfaces

IX, pages 306–321. Springer, 2000.

P. J. Giblin and B. B. Kimia. On the local form and transitions of symmetry sets, medial axes, and shocks.

International Journal of Computer Vision, 54(1):143–157, 2003.

Y. Gingold, D. Salesin, and D. Zorin. Stroke-by-stroke glyph animation. Technical report, Cre-

ativity and Graphics Lab (CraGL) at George Mason University, Fairfax, Virginia, USA, 2008.

https://cragl.cs.gmu.edu/fontanim/.

O. Gold and M. Sharir. Dynamic time warping and geometric edit distance: Breaking the quadratic

barrier. ACM Trans. Algorithms, 14(4), 2018. doi: 10.1145/3230734.

A. Goldberg, X. Zhu, A. Singh, Z. Xu, and R. Nowak. Multi-manifold semi-supervised learning. In 12th

International Conference on Artificial Intelligence and Statistics, pages 169–176, 2009.

E. H. Gombrich. Art and illusion: A study in the psychology of pictorial representation, volume 5.

Phaidon London, 1977.

M. Gomez-Barrero, J. Galbally, J. Fierrez, J. Ortega-Garcia, and R. Plamondon. Enhanced on-line signa-

ture verification based on skilled forgery detection using sigma-lognormal features. In 2015 interna-

tional conference on biometrics (ICB), pages 501–506. IEEE, 2015.

A. A. Gooch, J. Long, L. Ji, A. Estey, and B. S. Gooch. Viewing progress in non-photorealistic rendering

through Heinlein’s lens. In Proceedings of the 8th International Symposium on Non-Photorealistic

Animation and Rendering, pages 165–171. ACM, 2010.

BIBLIOGRAPHY 331

I. C. Graphics and Applications. Fractional invisibility. IEEE Comput. Graph. Appl., 8(6):77–84, Nov.

1988.

A. Graves. Generating sequences with recurrent neural networks. arXiv preprint arXiv:1308.0850, 2013.

I. Grebert, D. G. Stork, R. Keesing, and S. Mims. Connectionist generalization for production: An exam-

ple from gridfont. Neural Networks, 5(4):699–710, 1992.

K. Gregor, I. Danihelka, A. Graves, and D. Wierstra. DRAW: A Recurrent Neural Network For Image

Generation. arXiv preprint arXiv:1502.04623, 2015.

S. Grossberg and R. W. Paine. A neural model of cortico-cerebellar interactions during attentive imi-

tation and predictive learning of sequential handwriting movements. Neural Networks, 13(8):999–

1046, 2000.

D. Ha and D. Eck. A neural representation of sketch drawings. In Sixth International Conference on

Learning Representations (ICLR), 2018. https://arxiv.org/abs/1704.03477.

P. Haeberli. Dynadraw: A dynamic drawing technique. http://www.graficaobscura.com/dyna/, 1989.

T. S. Haines, O. M. Aodha, and G. J. Brostow. My text in your handwriting. ACM Transactions on Graphics

(TOG), 35(3), 2016. Article no. 26.

P. C. Hansen. The L-curve and its use in the numerical treatment of inverse problems. In Computational

Inverse Problems in Electrocardiology, pages 119–142. WIT Press, 2000.

C. M. Harris and D. M. Wolpert. Signal-dependent noise determines motor planning. Nature, 394(6695):

780–784, 1998.

F. Haugen. Discrete-time signals and systems. 2005. URL http://techteach.no/

publications/discretetime_signals_systems/discrete.pdf.

S. Havemann, J. Edelsbrunner, P. Wagner, and D. Fellner. Curvature-controlled curve editing using

piecewise clothoid curves. Computers & Graphics, 37(6):764–773, 2013.

H. Hayashi, K. Abe, and S. Uchida. GlyphGAN: Style-consistent font generation based on generative

adversarial networks. Knowledge-Based Systems, 186, 2019.

P. J. Hayes and M. Leyton. Processes at discontinuities. In IJCAI, pages 1267–1272, 1989.

M. A. Heald. Rational approximations for the Fresnel integrals. Mathematics of Computation, 44(170):

459–459, 1985. ISSN 0025-5718.

K. A. Heller and Z. Ghahramani. Bayesian hierarchical clustering. In 22nd International Conference on

Machine learning (ICML), pages 297–304. ACM, 2005.

M. Hendrickx and J. Wagemans. A critique of Leyton’s theory of perception and cognition. Review of

Symmetry, Causality, Mind, by Michael Leyton, 1999.

http://techteach.no/publications/discretetime_signals_systems/discrete.pdf
http://techteach.no/publications/discretetime_signals_systems/discrete.pdf

332 BIBLIOGRAPHY

F. M. Henry and D. E. Rogers. Increased response latency for complicated movements and a memory

drum theory of neuromotor reaction. Research Quarterly. American Association for Health, Physical

Education and Recreation, 31(3):448–458, 1960.

A. Hertzmann. Non-photorealistic rendering and the science of art. In Proceedings of the 8th Interna-

tional Symposium on Non-Photorealistic Animation and Rendering, pages 147–157. ACM, 2010.

A. Hertzmann, C. E. Jacobs, N. Oliver, B. Curless, and D. H. Salesin. Image analogies. In Proceedings of

the 28th Annual Conference on Computer Graphics and Interactive Techniques, page 327–340, 2001.

A. Hertzmann, N. Oliver, B. Curless, and S. M. Seitz. Curve analogies. In Rendering Techniques, pages

233–246, 2002.

J. Herz, R. D. Hersch, and J. Gonczarowski. Coherent processing of character skeletal forms. Computers

and Graphics, 21(6):727–736, 1997.

J. Hespanha. Lecture notes on lqr/lqg controller design. staff.uz.zgora.pl/wpaszke/materialy/kss/lqrnotes.pdf,

2005.

J. D. Hobby. Smooth, easy to compute interpolating splines. Discrete and Computational Geometry, 1

(2):123—140, Jun 1986.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–1780,

1997.

B. Hoff. A model of duration in normal and perturbed reaching movement. Biological Cybernetics, 71

(6):481–488, 1994.

D. D. Hoffman and W. A. Richards. Parts of recognition. Cognition, 18(1-3):65–96, 1984. doi: 10.1016/

0010-0277(84)90022-2.

D. D. Hoffman and M. Singh. Salience of visual parts. Cognition, 63(1):29–78, 1997. doi: 10.1016/

S0010-0277(96)00791-3.

D. Hofstadter. Metamagical themas: Variations on a theme as the essence of imagination. Scientific

American, 247(4):14–21, 1982.

D. Hofstadter. Metamagical themas: Questing for the essence of mind and pattern. Basic Books, New

York, 1985. ISBN 978-0465045662.

D. Hofstadter, G. McGraw, et al. Letter spirit: An emergent model of the perception and creation of

alphabetic style. In Technical Report 68, Center for Research on Concepts and Cognition, 1993.

N. Hogan. Control and coordination of voluntary arm movements. In American Control Conference,

1982, pages 522–528. IEEE, 1982.

BIBLIOGRAPHY 333

A. Holland Michael. KATSU shows you how to make a graffiti drone. https://www.vice.com/en_

us/article/mvxedv/katsu-shows-you-how-to-make-a-graffiti-drone-456,

2015.

J. M. Hollerbach. An oscillation theory of handwriting. Biological Cybernetics, 39(2):139–156, 1981.

D. H. House and M. Singh. Line drawing as a dynamic process. In 15th Pacific Conference on Computer

Graphics and Applications (PG’07), pages 351–360, 2007.

S. C. Hsu and I. H. H. Lee. Drawing and animation using skeletal strokes. In Proceedings of the 21st

Annual Conference on Computer Graphics and Interactive Techniques, pages 109–118, New York, New

York, USA, 1994.

C. Hu and R. D. Hersch. Parameterizable fonts based on shape components. IEEE Computer Graphics

and Applications, 21(3):70–85, 2001. doi: 10.1109/38.920629.

J. Hulleman, W. Te Winkel, and F. Boselie. Concavities as basic features in visual search: Evidence from

search asymmetries. Perception & Psychophysics, 62(1):162–174, 2000.

T. Igarashi and J. Mitani. Apparent layer operations for the manipulation of deformable objects. In ACM

Transactions on Graphics (TOG), volume 29, page 110, 2010.

T. Igarashi, S. Matsuoka, S. Kawachiya, and H. Tanaka. Interactive beautification. ACM SIGGRAPH 2007

courses on - SIGGRAPH ’07, 2007. doi: 10.1145/1281500.1281529.

W. R. Jack. On the analysis of voluntary muscular movements by certain new instruments. Proceedings

of the Royal Society of London, 57(340-346):477–481, 1894.

E. J. Jakubiak, R. N. Perry, and S. F. Frisken. An improved representation for stroke-based fonts. In ACM

SIGGRAPH 2006 Sketches, 2006.

K. H. James and I. Gauthier. Letter processing automatically recruits a sensory-motor brain network.

Neuropsychologia, 44(14):2937–2949, 2006.

M. Jeannerod. Mental imagery in the motor context. Neuropsychologia, 33(11):1419–1432, 1995.

M. I. Jordan and D. M. Wolpert. Computational motor control, 1999.

G. Kanizsa. Organization in Vision: Essays on Gestalt Perception. Praeger, 1979.

H. Kano, H. Fujioka, and K. Inoue. Discrete-time control systems approach for optimal smoothing

splines. In Proceedings of the 44th IEEE Conference on Decision and Control, pages 356–361, 2005.

doi: 10.1109/CDC.2005.1582181.

H. S. Kao, R. Hoosain, and G. Van Galen. Graphonomics: Contemporary research in handwriting. Else-

vier, 1986.

P. Karow. Digital Typefaces: Description and Formats. Springer, 1994.

https://www.vice.com/en_us/article/mvxedv/katsu-shows-you-how-to-make-a-graffiti-drone-456
https://www.vice.com/en_us/article/mvxedv/katsu-shows-you-how-to-make-a-graffiti-drone-456

334 BIBLIOGRAPHY

R. Kaushik. Cy Twombly (gesture, space, and writing). In H. De Preester, editor, Moving imagination,

explorations of gesture and inner movement in the arts, pages 235—246. John Benjamins Publishing

Company, 2013.

S. W. Keele and J. J. Summers. The structure of motor programs. Motor control: Issues and trends, pages

109–142, 1976.

P. J. Kellman and P. Garrigan. Segmentation, grouping, and shape: Some hochbergian questions. 2007.

P. J. Kellman and T. F. Shipley. A theory of visual interpolation in object perception. Cognitive Psychology,

23(2):141—221, Apr 1991.

J. Kelso and E. Saltzman. Motor control: Which themes do we orchestrate? Behavioral and Brain

Sciences, 5(04):554–557, 1982.

M. G. Kendall and J. K. Ord. Time Series. 06 1993. ISBN 9780340593271.

J. C. Keough. Graffiti Research Lab: Bridging the Canonical and the Criminal. PhD thesis, The Graduate

School, Stony Brook University: Stony Brook, NY., 2010.

B. Kim, O. Wang, A. C. Öztireli, and M. Gross. Semantic segmentation for line drawing vectorization

using neural networks. Computer Graphics Forum, 37(2):329–338, 2018. doi: 10.1111/cgf.13365.

B. Kim, V. C. Azevedo, N. Thuerey, T. Kim, M. Gross, and B. Solenthaler. Deep fluids: A generative

network for parameterized fluid simulations. Computer Graphics Forum, 38(2):59–70, 2019. doi:

10.1111/cgf.13619.

B. Kimia, I. Frankel, and A.-M. Popescu. Euler spiral for shape completion. International journal of

computer vision, 54:159–182, 2003.

B. B. Kimia. On the role of medial geometry in human vision. Journal of Physiology–Paris, 97(2-3):

155–190, 2003.

B. B. Kimia, A. R. Tannenbaum, and S. W. Zucker. Shapes, shocks, and deformations I: The compo-

nents of two-dimensional shape and the reaction-diffusion space. International journal of computer

vision, 15(3):189–224, 1995.

R. Kimmel, D. Shaked, N. Kiryati, and A. M. Bruckstein. Skeletonization via distance maps and level

sets. Computer Vision and Image Understanding, 62(3):382 – 391, 1995.

J. Kimvall. Bad graffiti art gone good street art. 2007. URL http://www.academia.edu/

1121025/Bad_Graffiti_Art_Gone_Good_Street_Art.

J. Kimvall. The G-word. Dokument, Stockholm, 2014. ISBN 9789185639687.

D. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,

pages 1–13, 2014.

http://www.academia.edu/1121025/Bad_Graffiti_Art_Gone_Good_Street_Art
http://www.academia.edu/1121025/Bad_Graffiti_Art_Gone_Good_Street_Art

BIBLIOGRAPHY 335

S. Kishore. Make me a hanzi dataset. https://github.com/skishore/makemeahanzi, 2018.

URL www.skishore.me/makemeahanzi/.

P. Klee. Paul Klee: The thinking eye. The notebooks of Paul Klee, volume 15. G. Wittenborn, 1961.

D. E. Knuth. Mathematical typography. Bulletin of the American Mathematical Society, 1(2):337–373,

1979. doi: 10.1090/S0273-0979-1979-14598-1.

D. E. Knuth. Mathematical typography. In Digital Typography, pages 19–65. Csli Publications, 1999.

J. Koenderink and A. van Doorn. The Structure of Visual Spaces. Journal of Mathematical Imaging and

Vision, 31(2-3):171–187, 2008.

J. J. Koenderink. The structure of images. Biological cybernetics, 50(5):363–370, 1984.

J. J. Koenderink. Solid shape. MIT press, 1990.

J. J. Koenderink. Geometry of imaginary spaces. Journal of Physiology-Paris, 106(5):173–182, 2012.

I. Kovács, Á. Fehér, and B. Julesz. Medial-point description of shape: A representation for action coding

and its psychophysical correlates. Vision research, 38(15):2323–2333, 1998.

R. T. Krampe, R. Engbert, and R. Kliegl. Representational models and nonlinear dynamics: Irrecon-

cilable approaches to human movement timing and coordination or two sides of the same coin?

introduction to the special issue on movement timing and coordination. Brain and Cognition, 48(1):

1–6, 2002.

A. Kuijper, O. F. Olsen, P. Giblin, and M. Nielsen. Alternative 2D shape representations using the sym-

metry set. Journal of Mathematical Imaging and Vision, 26:127–147, 2006.

J. E. Kyprianidis, J. Collomosse, T. Wang, and T. Isenberg. State of the "art": A taxonomy of artistic styl-

ization techniques for images and video. IEEE Transactions on Visualization and Computer Graphics,

19(5):866–885, 2013.

F. Lacquaniti, C. Terzuolo, and P. Viviani. The law relating the kinematic and figural aspects of drawing

movements. Acta psychologica, 54(1):115–130, 1983.

B. M. Lake, R. R. Salakhutdinov, and J. Tenenbaum. One-shot learning by inverting a compositional

causal process. In Advances in neural information processing systems, pages 2526–2534, 2013.

B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum. Human-level concept learning through probabilistic

program induction. Science, 350(6266):1332–1338, 2015.

B. Lamiroy, T. Bouville, J. Blégean, H. Cao, S. Ghamizi, R. Houpin, and M. Lloyd. Re-typograph phase

I: A proof-of-concept for typeface parameter extraction from historical documents. In E. K. Ring-

ger and B. Lamiroy, editors, Document Recognition and Retrieval XXII, volume 9402, pages 80–91.

International Society for Optics and Photonics, SPIE, 2015.

https://github.com/skishore/makemeahanzi
www.skishore.me/makemeahanzi/

336 BIBLIOGRAPHY

K. Lang and M. Alexa. The Markov pen: Online synthesis of free-hand drawing styles. In Proceedings of

the workshop on Non-Photorealistic Animation and Rendering, pages 203–215. Eurographics Associ-

ation, 2015.

K. S. Lashley. The problem of serial order in behavior. Bobbs-Merrill, 1951.

L. J. Latecki and R. Lakämper. Discrete approach to curve evolution. In Mustererkennung 1998, pages

85–92. Springer, 1998.

R. Leavitt. Artist and Computer. Harmony Books, 1976.

H. Leder, S. Bär, and S. Topolinski. Covert painting simulations influence aesthetic appreciation of

artworks. Psychological Science, 23(12):1479–1481, 2012.

D.-H. Lee and H.-G. Cho. The beta-velocity model for simulating handwritten korean scripts. In Elec-

tronic Publishing, Artistic Imaging, and Digital Typography, pages 252–264. Springer, 1998.

E. T. Lee. Choosing nodes in parametric curve interpolation. Computer-Aided Design, 21(6):363–370,

1989.

J. Lehni. Hektor. http://hektor.ch/, 2004.

L. A. Leiva, D. Martín-Albo, and R. Plamondon. Gestures à go go: Authoring synthetic human-like stroke

gestures using the kinematic theory of rapid movements. ACM Transactions on Intelligent Systems

and Technology (TIST), 7(2):15, 2016.

L. A. Leiva, D. Martín-Albo, and R. Plamondon. The kinematic theory produces human-like stroke

gestures. Interacting with Computers, 29(4):552–565, July 2017.

K. Leonard, G. Morin, S. Hahmann, and A. Carlier. A 2D shape structure for decomposition and part

similarity. In 2016 23rd International Conference on Pattern Recognition (ICPR), pages 3216–3221.

IEEE, 2016.

R. Levien. The Euler spiral: A mathematical history. Opera, pages 1–14, 2008.

R. Levien. From Spiral to Spline: Optimal Techniques in Interactive Curve Design. PhD thesis, EECS

Department, University of California, Berkeley, December 2009a. PhD thesis, EECS Department,

University of California, Berkeley.

R. Levien and C. H. Séquin. Interpolating splines: Which is the fairest of them all? Computer-Aided

Design and Applications, 6(1):91–102, 2009.

R. L. Levien. From spiral to spline: Optimal techniques in interactive curve design. 2009b.

G. Levin, J. Feinberg, and C. Curtis. The alphabet synthesis machine. Technical report, 2013. URL

http://life.flong.com/storage/pdf/reports/alphabet_report.pdf.

http://hektor.ch/
http://life.flong.com/storage/pdf/reports/alphabet_report.pdf

BIBLIOGRAPHY 337

F. Leymarie and M. D. Levine. Curvature morphology. Technical report, McGill University, Montreal,

Canada, 1988.

F. Leymarie and M. D. Levine. Shape features using curvature morphology. In D. P. Casasent, editor,

Proc. of the SPIE Conf. on Intelligent Robots and Computer Vision VIII: Algorithms and Techniques,

volume SPIE–1192, part 2, pages 536–547, Philadelphia, PA, U.S.A., Nov. 1989. SPIE.

F. Leymarie and M. D. Levine. Simulating the grassfire transform using an active contour model. IEEE

Transactions on Pattern Analysis & Machine Intelligence, (1):56–75, 1992.

F. F. Leymarie. Thoughts on shape. In L. Albertazzi, editor, Visual Thought, volume 67 of Advances in

Consciousness Research, pages 303–350. John Benjamins Publishing Company, 2006.

F. F. Leymarie and P. Aparajeya. Medialness and the perception of visual art. Art & Perception, 5(2):

169–232, 2017.

F. F. Leymarie and B. B. Kimia. The shock scaffold for representing 3D shape. In International workshop

on visual form, pages 216–227. Springer, 2001.

F. F. Leymarie and B. B. Kimia. The medial scaffold of 3D unorganized point clouds. IEEE Trans. Pattern

Anal. Mach. Intell., 29(2):313–330, 2007.

M. Leyton. Symmetry-curvature duality. Computer Vision, Graphics, and Image Processing, 38(3):327–

341, 1987.

M. Leyton. A process-grammar for shape. Artificial Intelligence, 34(2):213–247, March 1988.

M. Leyton. Inferring causal history from shape. Cognitive Science, 13(3):357–387, Sep 1989.

M. Leyton. Group theory and architecture. Nexus Network Journal, 3(2):39—58, Sep 2001a. ISSN 1522-

4600.

M. Leyton. A generative theory of shape, volume 2145. Springer, 2001b.

M. Leyton. The structure of paintings. Springer, 2006.

M. Leyton. Process grammar: The basis of morphology. Springer Science & Business Media, 2012.

H. Li, H. Zhang, Y. Wang, J. Cao, A. Shamir, and D. Cohen-Or. Curve style analysis in a set of shapes. In

Computer Graphics Forum, volume 32, pages 77–88. Wiley Online Library, 2013.

X. Li, M. Parizeau, and R. Plamondon. Segmentation and reconstruction of on-line handwritten scripts.

Pattern recognition, 31(6):675–684, 1998.

Z. Lian and J. Xiao. Automatic shape morphing for Chinese characters. In SIGGRAPH Asia 2012 Techni-

cal Briefs, 2012.

Z. Lian, B. Zhao, X. Chen, and J. Xiao. EasyFont: A style learning-based system to easily build your

large-scale handwriting fonts. ACM Transactions on Graphics (TOG), 38(1):1–18, 2018.

338 BIBLIOGRAPHY

A. Lieutier. Any open bounded subset of Rn has the same homotopy type than its medial axis. In

Proceedings of the eighth ACM symposium on Solid modeling and applications, pages 65–75, 2003.

G. Liu, Z. Xi, and J.-M. Lien. Dual-space decomposition of 2D complex shapes. In 2014 IEEE Conference

on Computer Vision and Pattern Recognition, pages 4154–4161, Jun 2014.

D. Llorens Piñana et al. The UJIpenchars database: A pen-based database of isolated handwritten char-

acters. In N. Calzolari et al., editors, Proceedings of the Sixth International Conference on Language

Resources and Evaluation (LREC). European Language Resources Association (ELRA), may 2008.

M. Longcamp, J. L. Anton, M. Roth, and J. L. Velay. Visual presentation of single letters activates a

premotor area involved in writing. NeuroImage, 19(4):1492–1500, 2003.

M. Longcamp, T. Tanskanen, and R. Hari. The imprint of action: Motor cortex involvement in visual

perception of handwritten letters. NeuroImage, 33(2):681–688, 2006.

M. Longcamp, Y. Hlushchuk, and R. Hari. Neural correlates of the visual perception of handwritten

letters. In Advances in Graphonomics: Proceedings of IGS 2009, pages 194–197, 2009.

M. Longcamp, Y. Hlushchuk, and R. Hari. What differs in visual recognition of handwritten vs. printed

letters? An fMRI study. Human brain mapping, 32(8):1250–1259, 2011.

R. G. Lopes, D. Ha, D. Eck, and J. Shlens. A learned representation for scalable vector graphics. In

Proceedings of the IEEE International Conference on Computer Vision, pages 7930–7939, 2019.

M. Ltaief, H. Bezine, and A. M. Alimi. A neuro-beta-elliptic model for handwriting generation move-

ments. In Frontiers in Handwriting Recognition (ICFHR), 2012 International Conference on, pages

803–808. IEEE, 2012.

J. Lu, F. Yu, A. Finkelstein, and S. DiVerdi. HelpingHand: Example-based stroke stylization. ACM Trans-

actions on Graphics (TOG), 31(4):46, 2012.

J. Lu, C. Barnes, C. Wan, P. Asente, R. Mech, and A. Finkelstein. Decobrush: Drawing structured deco-

rative patterns by example. ACM Transactions on Graphics (TOG), 33(4):90, 2014.

D. P. Luebke. A developer’s survey of polygonal simplification algorithms. IEEE Computer Graphics and

Applications, 21(3):24–35, 2001. doi: 10.1109/38.920624.

L. Luo, C. Shen, X. Liu, and C. Zhang. A computational model of the short-cut rule for 2D shape decom-

position. IEEE Transactions on Image Processing, 24(1):273–283, 2015.

P. Lyu, X. Bai, C. Yao, Z. Zhu, T. Huang, and W. Liu. Auto-encoder guided GAN for Chinese calligra-

phy synthesis. In 2017 14th IAPR International Conference on Document Analysis and Recognition

(ICDAR), volume 1, pages 1095–1100, 2017.

F. J. Maarse. The study of handwriting movement: Peripheral models and signal processing techniques.

Lisse [etc.]: Swets & Zeitlinger, 1987.

BIBLIOGRAPHY 339

J. S. MacDonald. Experimental studies of handwriting signals. Citeseer, 1966.

I. S. MacKenzie and W. Buxton. Extending Fitts’ law to two-dimensional tasks. In Proceedings of the

SIGCHI conference on Human factors in computing systems, pages 219–226. ACM, 1992.

D. Macrini, K. Siddiqi, and S. Dickinson. From skeletons to bone graphs: Medial abstraction for object

recognition. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2008.

D. Macrini, S. Dickinson, D. Fleet, and K. Siddiqi. Bone graphs: Medial shape parsing and abstraction.

Computer Vision and Image Understanding, 115(7):1044–1061, 2011.

E. Maggiori, H. L. Manterola, and M. del Fresno. Perceptual grouping by tensor voting: A comparative

survey of recent approaches. IET Computer Vision, 9(2):259–277, 2015.

B. B. Mandelbrot. A case against the lognormal distribution. In Fractals and scaling in finance, pages

252–269. Springer, 1997.

A. Manzanera, T. Nguyena, and X. Xu. Line and circle detection using dense one-to-one Hough trans-

forms on greyscale images. EURASIP Journal on Image and Video Processing, (46), December 2016.

U. Maoz, A. Berthoz, and T. Flash. Complex unconstrained three-dimensional hand movement and

constant equi-affine speed. Journal of neurophysiology, 101(2):1002–15, 2009.

D. Marr. Vision: A Computational Investigation into the Human Representation and Processing of Visual

Information. Henry Holt and Co., Inc., USA, 1982.

A. Massad and G. Medioni. 2-D shape decomposition into overlapping parts. In Visual Form 2001,

pages 398–409. Springer, 2001.

J. McCann and N. Pollard. Local layering. In ACM Transactions on Graphics (TOG), volume 28, page 84.

ACM, 2009.

J. McCormack and A. Lomas. Understanding aesthetic evaluation using deep learning. Lecture Notes in

Computer Science, pages 118–133, 2020.

J. McCrae and K. Singh. Sketching piecewise clothoid curves. Computers and Graphics (Pergamon), 33

(4):452–461, 2009.

J. McCrae and K. Singh. Neatening sketched strokes using piecewise french curves. In Proceedings

of the Eighth Eurographics Symposium on Sketch-Based Interfaces and Modeling - SBIM ’11, pages

141––148, 2011.

G. McGraw Jr. Letter Spirit (part one): Emergent high-level perception of letters using fluid concepts. PhD

thesis, Indiana University, Dept. of Computer Science, Indianapolis, U.S.A., September 1995.

C. Mediavilla, A. Marshall, M. van Stone, G. Xuriguera, and D. Jackson. Calligraphy: From calligraphy to

abstract painting. Scirpus, 1996.

340 BIBLIOGRAPHY

Y. Meirovitch and T. Flash. Report on segmentation of trajectories into the underlying primitives and

syntactic rules for their compositionality based on differential geometry approaches. Technical Re-

port AMARSi ICT-248311, D1.4, 2013. URL http://www.amarsi-project.eu/sites/www.

amarsi-project.eu/files/D14.pdf.

R. G. Meulenbroek, A. Thomassen, D. Rosebaum, L. D. Loukopoulos, and J. Vaughan. Adaptation of a

reaching model to handwriting: How different effectors can produce the same written output, and

other results. Psychological Research, 59(1):64–74, 1996.

X. Mi. Structural representation of 2D shape. Technical report, Computer Science Dept., Rutgers Uni-

versity, USA, 2006.

X. Mi and D. DeCarlo. Separating parts from 2D shapes using relatability. In IEEE 11th International

Conference on Computer Vision (ICCV), 2007.

K. T. Miura. A general equation of aesthetic curves and its self-affinity. Computer-Aided Design and

Applications, 3(1-4):457–464, 2006.

T. Miyazaki, T. Tsuchiya, Y. Sugaya, S. Omachi, M. Iwamura, S. Uchida, and K. Kise. Automatic gener-

ation of typographic font from small font subset. IEEE Computer Graphics and Applications, 40(1):

99–111, 2019.

U. Montanari. Continuous skeletons from digitized images. Journal of the ACM, 16(4):534–549, Oct.

1969.

P. Morasso. Spatial control of arm movements. Experimental Brain Research, 42(2):223–7, 1981.

P. Morasso. Understanding cursive script as a trajectory formation paradigm. Graphonomics, 37:137–67,

1986.

P. Morasso and F. Mussa Ivaldi. Trajectory formation and handwriting: A computational model. Biolog-

ical cybernetics, 45(2):131–142, 1982.

P. Mordohai and G. Medioni. Dimensionality estimation, manifold learning and function approxima-

tion using tensor voting. The Journal of Machine Learning Research, 11:411–450, 2010.

D. Mumford. Elastica and computer vision. Algebraic Geometry and its Applications, pages 491—506,

1994.

K. P. Murphy. Machine Learning: A Probabilistic Perspective. The MIT Press, 2012. ISBN 0262018020,

9780262018029.

F. Mussa-Ivaldi, S. Solla, et al. Neural primitives for motion control. Oceanic Engineering, IEEE Journal

of, 29(3):640–650, 2004.

F. A. Mussa-Ivaldi. Nonlinear force fields. In IEEE Proc. CIRA, pages 84–90, 1997.

http://www.amarsi-project.eu/sites/www.amarsi-project.eu/files/D14.pdf
http://www.amarsi-project.eu/sites/www.amarsi-project.eu/files/D14.pdf

BIBLIOGRAPHY 341

F. A. Mussa-Ivaldi and E. Bizzi. Motor learning through the combination of primitives. Philosophical

Transactions of the Royal Society B: Biological Sciences, 355(1404):1755–69, 2000.

H. Nagasaki. Asymmetric velocity and acceleration profiles of human arm movements. Experimental

Brain Research, 74(2):319–26, 1989.

V. Nair and G. E. Hinton. Inferring motor programs from images of handwritten digits. In Advances in

neural information processing systems, pages 515–22, 2005.

F. Nake. Computer art: A personal recollection. In Proceedings of the 5th conference on Creativity &

cognition, pages 54–62. ACM, 2005.

K. M. Newell and D. E. Vaillancourt. Dimensional change in motor learning. Human movement science,

20(4):695–715, 2001.

A. M. Noll. Human or machine: A subjective comparison of Piet Mondrian’s" composition with

lines"(1917) and a computer-generated picture. The psychological record, 1966.

M. Nöllenburg. A survey on automated metro map layout methods. In 1st Schematic Mapping Work-

shop, University of Essex, UK, 2014. https://sites.google.com/site/schematicmapping/home.

G. Noordzij. The Stroke — theory of writing. Hyphen Press, 2005. Translated from the Dutch original of

1985 by Peter Enneson.

R. L. Ogniewicz. Discrete Voronoi skeletons. PhD thesis, 1992.

R. L. Ogniewicz and M. Ilg. Voronoi skeletons: Theory and applications. In IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), pages 63–69, 1992.

L. Olsen, F. F. Samavati, M. C. Sousa, and J. A. Jorge. Sketch-based modeling: A survey. Computers &

Graphics, 33(1):85–103, 2009.

B. O’Neill. Elementary Differential Geometry. Academic press, 2006. Revised second edition of the 1966

original.

C. O’Reilly and R. Plamondon. Automatic extraction of sigma-lognormal parameters on signatures. In

Proc. of 11th International Conference on Frontier in Handwriting Recognition (ICFHR), 2008.

C. O’Reilly and R. Plamondon. Development of a sigma-lognormal representation for on-line signa-

tures. Pattern recognition, 42(12):3324–3337, 2009.

J. O’Rourke. Computational Geometry in C. Cambridge University Press, 2 edition, 1998.

E. Oztop, M. Kawato, and M. A. Arbib. Mirror neurons: Functions, mechanisms and models. Neuro-

science letters, 540:43–55, 2013.

R. Paine, S. Grossberg, and A. Van Gemmert. A quantitative evaluation of the AVITEWRITE model of

handwriting learning. Human movement science, 23(6):837–860, 2004.

342 BIBLIOGRAPHY

N. Papanelopoulos, Y. Avrithis, and S. Kollias. Revisiting the medial axis for planar shape decomposi-

tion. Computer Vision and Image Understanding, 179:66–78, 2019. doi: 10.1016/j.cviu.2018.10.007.

P. Parent and S. W. Zucker. Trace inference, curvature consistency, and curve detection. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, 11(8):823–839, 1989.

R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of training Recurrent Neural Networks. In Proc.

of ICML, volume 28, pages 1310–8, 2013.

V. Pham, T. Bluche, C. Kermorvant, and J. Louradour. Dropout Improves Recurrent Neural Networks for

Handwriting Recognition. In Proc. of ICFHR, pages 285–90. IEEE, 2014.

H. Q. Phan, H. Fu, and A. B. Chan. Flexyfont: Learning transferring rules for flexible typeface synthesis.

Computer Graphics Forum, 34(7):245–256, 2015.

A. Pignocchi. How the intentions of the draftsman shape perception of a drawing. Consciousness and

Cognition, 19(4):887–898, 2010.

S. M. Pizer, K. Siddiqi, G. Székely, J. N. Damon, and S. W. Zucker. Multiscale medial loci and their

properties. International Journal of Computer Vision, 55(2-3):155–179, 2003.

R. Plamondon. Looking at handwriting generation from a velocity control perspective. Acta Psycholog-

ica, 82(1-3):89—101, Mar 1993.

R. Plamondon. A kinematic theory of rapid human movements. Part I. Movement representation and

generation. Biological cybernetics, 72(4):295–307, 1995.

R. Plamondon and A. M. Alimi. Speed/accuracy trade-offs in target-directed movements. Behavioral

and Brain Sciences, 20(02):279–303, 1997.

R. Plamondon and W. Guerfali. The 2/3 power law: When and why? Acta psychologica, 100(1):85–96,

1998a.

R. Plamondon and W. Guerfali. The generation of handwriting with delta-lognormal synergies. Biolog-

ical Cybernetics, 78(2):119–132, 1998b.

R. Plamondon and C. M. Privitera. A neural model for generating and learning a rapid movement se-

quence. Biological cybernetics, 74(2):117–130, 1996.

R. Plamondon and C. M. Privitera. The segmentation of cursive handwriting: An approach based on

off-line recovery of the motor-temporal information. IEEE Transactions on Image Processing, 8(1):

80–91, 1999.

R. Plamondon and S. N. Srihari. Online and off-line handwriting recognition: A comprehensive survey.

IEEE Transactions on pattern analysis and machine intelligence, 22(1):63–84, 2000.

R. Plamondon, M. Djioua, and C. O’Reilly. Recent developments in the study of rapid human move-

ments with the kinematic theory. Traitement Du Signal, 26:377–394, 2009.

BIBLIOGRAPHY 343

R. Plamondon, C. O’Reilly, C. Remi, and T. Duval. The lognormal handwriter: Learning, performing and

declining. Frontiers in Psychology, 4(945), 2013.

R. Plamondon, C. O’Reilly, J. Galbally, A. Almaksour, and É. Anquetil. Recent developments in the study

of rapid human movements with the kinematic theory. Pattern Recognition Letters, 35:225–35, 2014.

R. Plamondon et al. Modelling velocity profiles of rapid movements: A comparative study. Biological

cybernetics, 69(2):119–28, 1993.

R. Plamondon et al. A kinematic theory of rapid human movement. Part IV. Biological Cybernetics, 89

(2):126–38, 2003.

A. Polit and E. Bizzi. Processes controlling arm movements in monkeys. Science, 201(4362):1235–1237,

1978.

F. Polyakov, R. Drori, Y. Ben-Shaul, M. Abeles, and T. Flash. A compact representation of drawing move-

ments with sequences of parabolic primitives. PLoS Comput Biol, 5(7):e1000427–e1000427, 2009.

C. Ramaiah, R. Plamondonm, and V. Govindaraju. A sigma-lognormal model for handwritten text

CAPTCHA generation. In Pattern Recognition (ICPR), 2014 22nd International Conference on, pages

250–255. IEEE, 2014.

J. A. Rehling. Letter Spirit (part two): Modeling Creativity in a Visual Domain. PhD thesis, Indiana

University, Dept. of Computer Science, Indianapolis, U.S.A., July 2001.

M. Resnick, B. Myers, K. Nakakoji, B. Shneiderman, R. Pausch, T. Selker, and M. Eisenberg. Design

principles for tools to support creative thinking. Technical report, Carnegie Mellon University, 2005.

W. Richards and D. D. Hoffman. Codon constraints on closed 2D shapes. Computer Vision, Graphics,

and Image Processing, 31(3):265–281, 1985.

M. J. Richardson and T. Flash. Comparing smooth arm movements with the two-thirds power law and

the related segmented-control hypothesis. The Journal of Neuroscience, 22(18):8201–8211, 2002.

B. Rohrer and N. Hogan. Avoiding spurious submovement decompositions: A globally optimal algo-

rithm. Biological cybernetics, 89(3):190–199, 2003.

B. Rohrer and N. Hogan. Avoiding spurious submovement decompositions II. Biological cybernetics, 94

(5):409–14, 2006.

H. Rom and G. Medioni. Hierarchical decomposition and axial shape description. IEEE Transactions

on Pattern Analysis and Machine Intelligence, pages 973–981, 1993.

D. Rosand. Drawing acts: Studies in graphic expression and representation. Cambridge University Press

Cambridge, 2002.

D. Rosand. Time lines. In H. De Preester, editor, Moving imagination, explorations of gesture and inner

movement in the arts, pages 205–220. John Benjamins Publishing Company, 2013.

344 BIBLIOGRAPHY

D. A. Rosenbaum. Human motor control. Academic press, 2009.

D. A. Rosenbaum, L. D. Loukopoulos, R. G. Meulenbroek, J. Vaughan, and S. E. Engelbrecht. Planning

reaches by evaluating stored postures. Psychological review, 102(1):28, 1995.

D. A. Rosenbaum, R. G. Cohen, S. A. Jax, D. J. Weiss, and R. Van Der Wel. The problem of serial order in

behavior: Lashley’s legacy. Human movement science, 26(4):525–554, 2007.

M. E. Rosheim. Robot evolution: The development of anthrobotics. John Wiley & Sons, 1994.

P. Rosin. Multiscale representation and matching of curves using codons. CVGIP: Graphical Models and

Image Processing, 55(4):286–310, Jul 1993. ISSN 1049-9652.

P. L. Rosin. Shape partitioning by convexity. IEEE Transactions on Systems, Man, and Cybernetics-Part

A: Systems and Humans, 30(2):202–210, 2000.

P. L. Rosin. Computing global shape measures. Handbook of Pattern Recognition and Computer Vision,

pages 177—196, Jan 2005.

E. Roth. Graffiti taxonomy diptych: New York and Paris. http://www.evan-roth.com/work/graffiti-

taxonomy-nyc-paris/, 2011.

E. Roth, T. Watson, C. Sugrue, T. Vanderlin, and J. Wilkinson. An open databse for graffiti markup lan-

guage (GML) files. https://000000book.com/data, 2009.

P. K. Saha, G. Borgefors, and G. S. di Baja. A survey on skeletonization algorithms and their applications.

Pattern recognition letters, 76:3–12, 2016.

S. Saito, A. Kani, Y. Chang, and M. Nakajima. Curvature-based stroke rendering. The Visual Computer,

24(1):1–11, 2008.

C. Sanderson. Armadillo: An open source C++ linear algebra library for fast prototyping and computa-

tionally intensive experiments. 2010.

T. Sanocki. Effects of font-and letter-specific experience on the perceptual processing of letters. The

American journal of psychology, pages 435–458, 1992.

M. Sarfraz. Interactive curve modeling. Springer, 2008.

M. Sarfraz, A. Masood, and M. R. Asim. A new approach to corner detection. In Computer vision and

graphics, pages 528–533. Dordrecht, 2006.

L. Scalera, E. Mazzon, P. Gallina, and A. Gasparetto. Airbrush robotic painting system: Experimental

validation of a colour spray model. In International Conference on Robotics in Alpe-Adria Danube

Region, pages 549–556. Springer, 2017.

S. Schaal. Dynamic movement primitives — a framework for motor control in humans and humanoid

robotics. In Adaptive Motion of Animals and Machines, pages 261–280. Springer, 2006.

BIBLIOGRAPHY 345

S. Schaal, P. Mohajerian, and A. Ijspeert. Dynamics systems vs. optimal control: A unifying view.

Progress in brain research, 165:425–445, 2007.

D. Schmidlapp. Style Writing from the Underground:(R) evolutions of Aerosol Linguistic. IGTimes, 1996.

R. A. Schmidt. A schema theory of discrete motor skill learning. Psychological review, 82(4):225, 1975.

U. Schneider. A hybrid approach for stroke-based letterform composition including outline-based

methods. Computer Graphics Forum, 19(4):243–256, 2000.

J. P. Scholz and G. Schöner. The uncontrolled manifold concept: Identifying control variables for a

functional task. Experimental Brain Research, 126(3):289—306, 1999.

L. Schomaker. Simulation and recognition of handwriting movements: A vertical approach to modeling

human motor behavior. PhD thesis, Katholieke Universiteit te Nijmegen, Nijmegen, The Nether-

lands, 1991.

L. Schomaker. A neural oscillator-network model of temporal pattern generation. Human movement

science, 11(1):181–192, 1992.

M. Schuster. Better generative models for sequential data problems: Bidirectional recurrent mixture

density networks. In Advances in Neural Information Processing Systems (NIPS), pages 589–595. MIT

Press, 2000.

H. S. Seah, Z. Wu, F. Tian, X. Xiao, and B. Xie. Artistic brushstroke representation and animation with

disk B-spline curve. In ACM SIGCHI International Conference on Advances in Computer Entertain-

ment Technology, pages 88—93, 2005.

W. P. Seeley. Movement, gesture, and meaning. In H. De Preester, editor, Moving imagination, explo-

rations of gesture and inner movement in the arts, pages 51—68. John Benjamins Publishing Com-

pany, 2013.

D. Shaked and A. M. Bruckstein. Pruning medial axes. Computer vision and image understanding, 69

(2):156–169, 1998.

A. Shamir. Constraint-based approach for automatic hinting of digital typefaces. ACM Transactions on

Graphics (TOG), 22(2):131–151, 2003.

A. Shamir and A. Rappoport. Extraction of typographic elements from outline representations of fonts.

Computer Graphics Forum, 15(3):259–268, 1996.

R. N. Shepard. Toward a universal law of generalization for psychological science. Science, 237(4820):

1317–1323, 1987.

E. C. Sherbrooke, N. M. Patrikalakis, and F.-E. Wolter. Differential and topological properties of medial

axis transforms. Graphical Models and Image Processing, 58(6):574–592, 1996.

346 BIBLIOGRAPHY

H. Shinoda, H. Fujioka, and H. Kano. Generation of cursive characters using minimum jerk model. In

IEEE Proc. SICE, volume 1, pages 730–3, 2003.

B. Shneiderman. Creativity support tools: A grand challenge for HCI researchers. In M. Redondo,

C. Bravo, and M. Ortega, editors, Engineering the User Interface, pages 1–9. Springer London, 2009.

K. Shoemake. ARCBALL: a user interface for specifying three-dimensional orientation using a mouse.

In Graphics Interface, volume 92, pages 151–156, 1992.

K. Siddiqi and B. B. Kimia. Parts of visual form: Computational aspects. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 17(3):239–251, 1995.

K. Siddiqi and S. Pizer, editors. Medial Representations: Mathematics, Algorithms and Applications,

volume 37 of Computational Imaging and Vision series. Springer, 2008.

M. Singh. Visual representation of contour and shape. Oxford handbook of perceptual organization,

pages 236–258, 2015.

M. Singh and D. D. Hoffman. Part-based representations of visual shape and implications for visual

cognition. In Advances in Psychology, volume 130, pages 401–459. 2001.

M. Singh, G. D. Seyranian, and D. D. Hoffman. Parsing silhouettes: The short-cut rule. Perception and

Psychophysics, 61(4):636–660, 1999.

J. G. Snodgrass and M. Vanderwart. A standardized set of 260 pictures: norms for name agreement,

image agreement, familiarity, and visual complexity. Journal of experimental psychology: Human

learning and memory, 6(2):174, 1980.

R. Sosnik, B. Hauptmann, A. Karni, and T. Flash. When practice leads to co-articulation: The evolution

of geometrically defined movement primitives. Experimental Brain Research, 156(4):422–438, 2004.

P. Spröte, F. Schmidt, and R. W. Fleming. Visual perception of shape altered by inferred causal history.

Scientific Reports, 6(36245), 2016.

O. Stettiner and D. Chazan. A statistical parametric model for recognition and synthesis of handwriting.

In Proceedings of the 12th IAPR International Conference on Pattern Recognition, volume 2, pages 34–

38. IEEE, 1994.

G. Stiny and J. Gips. Shape grammars and the generative specification of painting and sculpture. Infor-

mation processing, 71(1460-1465), 1972.

G. C. Stowers and P. Goldman. Graffiti art: An essay concerning the recognition of some forms of graffiti

as art. Unpublished essay, Fall, 1997.

S. Strassmann. Hairy brushes. ACM Siggraph Computer Graphics, 20(4):225–232, 1986.

F. Stulp and O. Sigaud. Many regression algorithms, one unified model: A review. Neural Networks, 69:

60–79, 2015.

BIBLIOGRAPHY 347

S. L. Su, Y.-Q. Xu, H.-Y. Shum, and F. Chen. Simulating artistic brushstrokes using interval splines. In

Proceedings of the 5th IASTED International Conference on Computer Graphics and Imaging, pages

85–90, 2002.

Y. Sun, H. Qian, and Y. Xu. A geometric approach to stroke extraction for the Chinese calligraphy robot.

In IEEE International Conference on Robotics and Automation (ICRA), pages 3207–3212, 2014.

I. Sutskever. Training Recurrent Neural Networks. PhD thesis, University of Toronto, 2013.

R. Suveeranont and T. Igarashi. Example-based automatic font generation. In Smart Graphics, number

LNCS 6133 in Lecture Notes in Computer Science, pages 127–138. 2010.

A. Tagliasacchi. Skeletal representations and applications. Technical report, School of Computing Sci-

ence, Simon Fraser University, SFU-CMPT TR 2012-55-1, 2013.

H. Tanaka, M. Tai, and N. Qian. Different predictions by the minimum variance and minimum torque-

change models on the skewness of movement velocity profiles. Neural computation, 16(10):2021–

2040, 2004.

F. Tang, W. Dong, Y. Meng, X. Mei, F. Huang, X. Zhang, and O. Deussen. Animated construction of

Chinese brush paintings. IEEE Transactions on Visualization and Computer Graphics, 24(12):3019–

3031, 2017.

S. Tang, Z. Xia, Z. Lian, Y. Tang, and J. Xiao. FontRNN: Generating Large-scale Chinese Fonts via Recur-

rent Neural Network. Computer Graphics Forum, 38(7):567–577, 2019.

A. K. Tanwani and S. Calinon. Learning robot manipulation tasks with task-parameterized semitied

hidden semi-Markov model. IEEE Robotics and Automation Letters, 1(1):235–242, 2016.

E. Taub and A. Berman. Movement and learning in the absence of sensory feedback. The neuropsychol-

ogy of spatially oriented behavior, 2:173–192, 1968.

C.-H. Teh and R. T. Chin. On the detection of dominant points on digital curves. IEEE Transactions on

pattern analysis and machine intelligence, 11(8):859–872, 1989.

A. Telea. Feature preserving smoothing of shapes using saliency skeletons. In Visualization in Medicine

and Life Sciences II, pages 153–170. Springer, 2012.

Tempt1, E. Roth, C. Sugrue, Z. Lieberman, T. Watson, and J. Powderly. The eyewriter.

http://www.eyewriter.org/, 2009.

J. B. Tenenbaum and W. T. Freeman. Separating style and content with bilinear models. Neural compu-

tation, 12(6):1247–1283, 2000.

H.-L. Teulings and L. Schomaker. Invariant properties between stroke features in handwriting. Acta

psychologica, 82(1):69–88, 1993.

348 BIBLIOGRAPHY

H.-L. Teulings, P. A. Mullins, and G. E. Stelmach. The elementary units of programming in handwriting.

Advances in Psychology, 37:21–32, 1986.

Y. Thiel, K. Singh, and R. Balakrishnan. Elasticurves: Exploiting stroke dynamics and inertia for the

real-time neatening of sketched 2D curves. In Proceedings of the 24th annual ACM symposium on

User interface software and technology, pages 383–392. ACM, 2011.

A. Thomassen and H.-L. Teulings. Time, size and shape in handwriting: Exploring spatio-temporal

relationships at different levels. In J. Michon and J. Jackson, editors, Time, Mind, and Behavior,

pages 253–263. Springer, 1985.

C. Thompson. Automated calligraphy using dynamics. Technical report, University of Washington,

Dept. of Computer Science and Engineering, 2010.

S. Todd and W. Latham. Evolutionary Art and Computers. Academic Press, 1992.

E. Todorov. Optimality principles in sensorimotor control. Nature neuroscience, 7(9):907–915, 2004.

E. Todorov and M. I. Jordan. Smoothness maximization along a predefined path accurately predicts the

speed profiles of complex arm movements. Journal of Neurophysiology, 80(2):696–714, 1998.

E. Todorov and M. I. Jordan. A minimal intervention principle for coordinated movement. In Proceed-

ings of the 15th International Conference on Neural Information Processing Systems, NIPS’02, pages

27—34, Cambridge, MA, USA, 2002a. MIT Press.

E. Todorov and M. I. Jordan. Optimal feedback control as a theory of motor coordination. Nature

neuroscience, 5(11):1226–1235, 2002b.

J. Togelius, A. J. Champandard, P. L. Lanzi, M. Mateas, A. Paiva, M. Preuss, and K. O. Stanley. Procedural

content generation: Goals, challenges and actionable steps. In Artificial and Computational Intelli-

gence in Games, volume 6 of Dagstuhl Follow-Ups, pages 61–75. Schloss Dagstuhl–Leibniz-Zentrum

fuer Informatik, 2013.

E. B. Torres, R. Quian Quiroga, H. Cui, and C. Buneo. Neural correlates of learning and trajectory plan-

ning in the posterior parietal cortex. Frontiers in integrative neuroscience, 7:39, 2013.

A. Treisman and S. Gormican. Feature analysis in early vision: Evidence from search asymmetries.

Psychological Review, 95(1):15–48, 1988.

P. Tresset and F. Fol Leymarie. Portrait drawing by Paul the robot. Computers & Graphics, 37(5):348–63,

2013.

M. Turvey, H. L. Fitch, and B. Tuller. The Bernstein perspective: I. The problems of degrees of freedom

and context-conditioned variability. Human motor behavior: An introduction, pages 239–252, 1982.

S. Ullman. Filling-in the gaps: The shape of subjective contours and a model for their generation.

Biological Cybernetics, 25(1):1–6, 1976.

BIBLIOGRAPHY 349

M. A. Umilta, C. Berchio, M. Sestito, D. Freedberg, and V. Gallese. Abstract art and cortical motor acti-

vation: An EEG study. Frontiers in human neuroscience, 6, 2012.

Y. Uno, M. Kawato, and R. Suzuki. Formation and control of optimal trajectory in human multijoint arm

movement. Biological cybernetics, 61(2):89–101, 1989.

J. D. van der Gon, J. P. Thuring, and J. Strackee. A handwriting simulator. Physics in medicine and

Biology, 6(3):407–14, 1962.

S. Van Der Walt, S. C. Colbert, and G. Varoquaux. The NumPy array: A structure for efficient numerical

computation. Computing in Science & Engineering, 13(2):22–30, 2011.

R. R. van Doorn and P. J. Keuss. Does the production of letter strokes in handwriting benefit from vision?

Acta Psychologica, 82(1–3):275–290, 1993.

A. S. Vempati, M. Kamel, N. Stilinovic, Q. Zhang, D. Reusser, I. Sa, J. Nieto, R. Siegwart, and P. Beardsley.

PaintCopter: An autonomous UAV for spray painting on three-dimensional surfaces. IEEE Robotics

and Automation Letters, 3(4):2862–2869, 2018.

P. Viviani and T. Flash. Minimum-jerk, two-thirds power law, and isochrony: Converging approaches to

movement planning. Journal of Experimental Psychology: Human Perception and Performance, 21

(1):32, 1995.

P. Viviani and G. McCollum. The relation between linear extent and velocity in drawing movements.

Neuroscience, page 211218, 1983.

P. Viviani and R. Schneider. A developmental study of the relationship between geometry and kinemat-

ics in drawing movements. Journal of Experimental Psychology: Human Perception and Performance,

17(1):198, 1991.

P. Viviani and C. Terzuolo. Trajectory determines movement dynamics. Neuroscience, 7(2):431–437,

1982.

J. Vredenbregt and W. Koster. Analysis and synthesis of handwriting. Philips Technical Review, 32(3):

73–78, 1971.

Y. Wada and M. Kawato. A theory for cursive handwriting based on the minimization principle. Biolog-

ical Cybernetics, 73(1):3–13, 1995.

J. Wagemans. Perceptual organization. In Stevens’ Handbook of Experimental Psychology and Cognitive

Neuroscience, Sensation, Perception, and Attention, volume 2, chapter 18, pages 803–872. John Wiley

& Sons, 2018. 4th Edition.

J. Wagemans, A. J. van Doorn, and J. J. Koenderink. Measuring 3D point configurations in pictorial

space. i-Perception, 2(1):77–111, 2011.

350 BIBLIOGRAPHY

J. Wagemans, J. H. Elder, M. Kubovy, S. E. Palmer, M. A. Peterson, M. Singh, and R. von der Heydt. A

century of Gestalt psychology in visual perception: I. perceptual grouping and figure–ground orga-

nization. Psychological Bulletin, 138(6):1172–1217, 2012.

D. Walton and D. Meek. An improved Euler spiral algorithm for shape completion. In Computer and

Robot Vision, 2008. CRV ’08. Canadian Conference on, pages 237–244, May 2008.

Y. Wamain, V. Kostrubiec, M. Longcamp, J. Tallet, and P. G. Zanone. Does graphic shapes perception

mirror handwriting patterns production? Advances in Graphonomics: Proceedings of IGS 2009, pages

202–205, 2009.

Y. Wamain, J. Tallet, P.-G. Zanone, and M. Longcamp. Brain responses to handwritten and printed

letters differentially depend on the activation state of the primary motor cortex. Neuroimage, 63(3):

1766–1773, 2012.

C. Wang and Z. Lai. Shape decomposition and classification by searching optimal part pruning se-

quence. Pattern Recognition, 54(October):206–217, 2016.

J. Wang, C. Wu, Y.-Q. Xu, H.-Y. Shum, and L. Ji. Learning-based cursive handwriting synthesis. In Eighth

IEEE International Workshop on Frontiers in Handwriting Recognition, pages 157–162, 2002.

J. Wang, C. Wu, Y.-Q. Xu, and H.-Y. Shum. Combining shape and physical modelsfor online cursive

handwriting synthesis. International Journal of Document Analysis and Recognition (IJDAR), 7(4):

219–227, 2005.

X. Wang, X. Liang, L. Sun, and M. Liu. Triangular mesh-based stroke segmentation for Chinese cal-

ligraphy. In 12th International Conference on Document Analysis and Recognition (ICDAR), pages

1155–1159, 2013.

Y. Wang. Interview with Charles Bigelow. TUGboat, 34(2):136–167, 2013.

Y. Wang, Y. Gao, and Z. Lian. Attribute2Font: Creating fonts you want from attributes. arXiv preprint

arXiv:2005.07865, 2020.

W. C. Watt. Canons of alphabetic change. In The alphabet and the brain, pages 122–152. Springer, 1988.

D.-L. Way, W.-J. Lin, and Z.-C. Shih. Computer-generated Chinese color ink paintings. Journal of the

Chinese Institute of Engineers, 29(6):1041–1050, 2006.

C. Wen, J. Chang, Y. Zhang, S. Chen, Y. Wang, M. Han, and Q. Tian. Handwritten Chinese font generation

with collaborative stroke refinement. arXiv preprint arXiv:1904.13268, 2019.

M. Wertheimer. Untersuchungen zur lehre von der gestalt. ii. Psychologische forschung, 4(1):301–350,

1923.

C.-F. Westin, S. E. Maier, H. Mamata, A. Nabavi, F. A. Jolesz, and R. Kikinis. Processing and visualization

for diffusion tensor MRI. Medical Image Analysis, 6(2):93–108, 2002.

BIBLIOGRAPHY 351

S. Wiewel, M. Becher, and N. Thuerey. Latent space physics: Towards learning the temporal evolution

of fluid flow. Computer Graphics Forum, 38(2):71–82, 2019.

K. Wiley and L. R. Williams. Representation of interwoven surfaces in 2 1/2 D drawing. In Proceedings

of the SIGCHI Conference on Human Factors in Computing Systems, pages 65–74. ACM, 2006.

L. Williams and K. K. Thornber. Orientation, scale, and discontinuity as emergent properties of illusory

contour shape. Neural Computation, 13(8):1683–1711, 2001.

L. R. Williams and D. W. Jacobs. Stochastic completion fields: A neural model of illusory contour shape

and salience. Neural Computation, 9(4):837––858, 1997.

A. Witkin. Scale-space filtering. In Proceedings of the Eighth International Joint Conference on Artificial

Intelligence (IJCAI), volume 2, pages 1019—22, Karlsruhe, West Germany, August 1983.

A. Woch and R. Plamondon. The problem of movement primitives in the context of the kinematic

theory. In Proceeding of the 11th Conference of the International Graphonomics Society, pages 67–71,

2003.

D. M. Wolpert, J. Diedrichsen, and J. R. Flanagan. Principles of sensorimotor learning. Nature Reviews

Neuroscience, 12(12):739–751, 2011.

F.-E. Wolter. Cut locus and medial axis in global shape interrogation and representation. Ocean engi-

neering design laboratory memorandum 92-2, MIT, Cambridge, MA, USA, 1992.

F.-E. Wolter and K.-I. Friese. Local and global geometric methods for analysis interrogation, recon-

struction, modification and design of shape. In IEEE Proceedings of the International Conference on

Computer Graphics (CGI), pages 137–152, June 2000.

A. L. Wong, J. Goldsmith, and J. W. Krakauer. A motor planning stage represents the shape of upcoming

movement trajectories. Journal of neurophysiology, 116(2):296–305, 2016.

R. S. Woodworth. Accuracy of voluntary movement. The Psychological Review: Monograph Supple-

ments, 3(3):i, 1899.

J. Xu and C. S. Kaplan. Calligraphic packing. In Proceedings of Graphics Interface 2007, pages 43–50,

2007.

S. Xu, F. C. Lau, and Y. Pan. A Computational Approach to Digital Chinese Painting and Calligraphy.

Springer, 2009.

S. Xu, H. Jiang, F. C. Lau, and Y. Pan. Computationally evaluating and reproducing the beauty of Chinese

calligraphy. IEEE Intelligent Systems, 27(3):63–72, 2012.

Y. Xu and M. Singh. Early computation of part structure: Evidence from visual search. Perception and

Psychophysics, 64(7):1039–1054, 2002.

352 BIBLIOGRAPHY

Z. Yan, S. Schiller, G. Wilensky, N. Carr, and S. Schaefer. k-curves: Interpolation at local maximum

curvature. ACM Transactions on Graphics (TOG), 36(4):129, 2017.

S. C. Yen and L. H. Finkel. Extraction of perceptually salient contours by striate cortical networks. Vision

Research, 38(5):719–741, 1998.

J. Yu and Q. Peng. Realistic synthesis of cao shu of Chinese calligraphy. Computers & Graphics, 29(1):

145–153, 2005.

M. E. Yumer, P. Asente, R. Mech, and L. B. Kara. Procedural modeling using autoencoder networks. In

Proceedings of the 28th Annual ACM Symposium on User Interface Software and Technology, pages

109–118, 2015.

W. Zaner-Bloser method. Zaner-Bloser — Wikipedia, the free encyclopedia. https://en.

wikipedia.org/wiki/Zaner-Bloser, 2020. [Online; accessed 13-December-2020].

M. Zeestraten, S. Calinon, and D. G. Caldwell. Variable duration movement encoding with minimal

intervention control. In Proc. of the IEEE Intl Conf. on Robotics and Automation (ICRA), pages 497–

503, May 2016a.

M. J. A. Zeestraten, S. Calinon, and D. G. Caldwell. Variable duration movement encoding with minimal

intervention control. In Proc. IEEE Intl Conf. on Robotics and Automation (ICRA), pages 497–503,

May 2016b.

D. Zhang and G. Lu. Review of shape representation and description techniques. Pattern recognition,

37(1):1–19, 2004.

J. Zhang, Y. Wang, W. Xiao, and Z. Luo. Synthesizing ornamental typefaces. Computer Graphics Forum,

36(1):64–75, 2017a.

X. Zhang and G. Liu. Chinese calligraphy character image synthesis based on retrieval. In Advances in

Multimedia Information Processing-PCM 2009, pages 167–178. Springer, 2009.

X.-Y. Zhang, F. Yin, Y.-M. Zhang, C.-L. Liu, and Y. Bengio. Drawing and recognizing Chinese characters

with recurrent neural network. IEEE transactions on pattern analysis and machine intelligence, 40

(4):849–862, 2017b.

Z. Zhang, J. Tomlinson, and C. Martin. Splines and linear control theory. Acta Applicandae Mathemat-

ica, 49(1):1–34, 1997.

C. L. Zitnick. Handwriting beautification using token means. ACM Transactions on Graphics (TOG), 32

(4):53, 2013.

C. Zou, J. Cao, W. Ranaweera, I. Alhashim, P. Tan, A. Sheffer, and H. Zhang. Legible compact calligrams.

ACM Transactions on Graphics (TOG), 35(4), 2016. Article no. 122.

L. Zusne. Visual perception of form. Academic Press New York, 1970.

https://en.wikipedia.org/wiki/Zaner-Bloser
https://en.wikipedia.org/wiki/Zaner-Bloser

	Introduction
	A short overview of graffiti styles
	Tags
	(Master-)Pieces
	Other graffiti styles and elements

	Graffiti in the Digital and Virtual Realms
	Graffiti in Graphic Design
	Graffiti in Games and Movies
	Computer Aided Graffiti Design

	Part I: Graffiti primitives
	Calligraphic stylisation: Movement and tags
	Outline stylisation: Parts and pieces
	Overall contributions of Part I

	Part II: Recovering graffiti primitives from geometry
	Geometric input analysis
	Trace based methods
	Outline based methods
	Overall contributions of Part II

	Publications

	Notation and preliminary definitions
	Geometry
	Motor plans and strokes:

	Background
	A Brief History
	Beyond painting and drawing: Graffiti production
	Curves in computer graphics
	Fairness, beautification and neatness of curves
	Curve stylisation

	Movement perception and representation
	Movement in the arts
	Perception of movement in static forms

	Motor control
	Principles and invariants
	Trajectory formation
	Graphonomics: Models of drawing and handwriting movement

	Letterform representation, generation and stylization
	Structural representations of letterforms
	Stroke representations

	Letterform stylisation and generation
	Handwriting synthesis
	Font and calligraphy generation and stylisation
	Stroke segmentation

	From shape to strokes
	Curvature based shape representations
	Axial symmetry based shape representations
	Perceptual grouping
	From parts to strokes

	Summary

	I Part I - Kinematic and geometric primitives for interactive graffiti art generation
	Calligraphic stylisation: the Sigma-Lognormal model
	Sigma Lognormal Model
	 model for calligraphic stylisation
	The weighted Sigma Lognormal () model
	The Weighted Euler Spiral Sigma Lognormal (E) Model
	Lognormal timing reparameterisations

	User interaction
	Kinematic variability and stylisation
	Artificial variability
	Stylistic variations

	Stroke generation and animation
	Conclusion

	Calligraphic stylisation: Minimal intervention control
	Trajectory Generation
	Dynamical system
	Optimization objective
	Tracking formulation
	Control weights
	Stochastic solution
	Periodic motions
	Multiple references

	User interfaces
	Mimicking Bézier curves
	Semi-tied structure

	Calligraphic stylisation
	Reconstructing instances of calligraphy
	Predefined motor plans
	Generating Asemic Tags
	Stroke thickness

	Discussion
	Performance
	Limitations: passage times

	Conclusion

	Outline stylisation: Sketching and layering
	Stroke Generation
	Smooth strokes

	Apparent layering and overlaps
	Partitions
	Fold culling
	Layering and Planar Map

	Results and Applications
	Conclusion

	II Part II - Graffitization: Recovering graffiti primitives from shape
	Curvilinear Shape Features
	Introduction
	Masking Problem
	Solution: Recursive CSF Computation

	Symmetry axis transform
	Discrete implementation
	Voronoi approximation

	Computing Curvilinear Shape Features (CSFs)
	CSF Computation
	CSF Overlap
	CSF saliency
	Computing the CASA

	Absolute Curvature Minima CSFs with the ESAT
	Computing the ESAT: Farthest Voronoi Diagram
	Identifying m+ and M- CSFs

	 Transition Segments and Inflections
	Fitting Euler Spirals
	Inflections

	Discussion
	Conclusion

	From Geometry to Kinematics with CSFs
	Segmentation method
	Circular arc decomposition

	Iterative Reconstruction of parameters
	Initialisation: Features, Sub-movements, Initial Targets
	Iterative scheme: Keys, Max speeds, Moving Targets
	Underlying observations
	Stopping Criteria, SNR

	Editing, Rendering and Stylistic Variations
	Smoothing and Fairing.

	Comparison: constrained minimum jerk model and MIC
	Conclusions

	Example-driven stylisation with the Sigma Lognormal Model
	Method
	Example-based input
	Kinematic parameters
	Data augmentation
	Kinematic Parameter Prediction (KPP)

	Results
	User defined virtual targets.
	Kinematic Style Transfer

	Discussion
	Model complexity

	Conclusion

	From 2D Shape to Strokes with CSFs
	Overview
	2D Shape Analysis
	Extended 2D Shape Analysis
	Good continuation () and flow direction ()

	Splits
	Local conditions
	Fork and branch assignments to splits.
	Split salience

	Junction Identification
	Junction properties
	Iterative Junction Identification
	Step 1: Identify -junctions
	Step 2: Identify Other Junctions

	From Junctions to Stroke Representations
	Stroke Paths
	Stroke Areas

	Discussion and Results
	Conclusion

	Font stylisation
	Path-based stylisation
	From stroke paths to strokes
	Simplification: constructing motor plans
	Structural modifiers
	Calligraphic Stylisation
	Outline Stylisation
	Stroke animation

	Area-Based Stylisation: Stroke Similarity
	Conclusions

	Conclusion
	Part I: Stroke primitives
	Part II: Graffiti content generation
	Summary of Contributions
	Limitations and future work
	 model
	MIC
	Graffiti design
	Empirical aesthetics research
	Parameter choices and evaluation
	Data driven methods

	Final notes

	Appendices
	List of peer-reviewed publications
	Ferri's form and composition functions
	Additional details on MIC trajectory generation
	Displacement-based smoothing weight
	Derivation with Simple Harmonic Motion

	Iterative solution

	Additional details for font segmentation
	Association fields
	Hanzi segmentation examples
	Font segmentation examples

	Symbols and values
	Symbols (general):
	Other symbols and objects:
	Functions:
	Parameters:
	Thresholds and Tolerances:

	Bibliography

